注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計(jì)算機(jī)/網(wǎng)絡(luò)計(jì)算機(jī)科學(xué)理論與基礎(chǔ)知識(shí)基于種群概率模型的優(yōu)化技術(shù):從算法到應(yīng)用(英文版)

基于種群概率模型的優(yōu)化技術(shù):從算法到應(yīng)用(英文版)

基于種群概率模型的優(yōu)化技術(shù):從算法到應(yīng)用(英文版)

定 價(jià):¥48.00

作 者: 姜群 著
出版社: 上海交通大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 計(jì)算機(jī)理論

ISBN: 9787313063694 出版時(shí)間: 2010-04-01 包裝: 平裝
開本: 16開 頁數(shù): 156 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《基于種群概率模型的優(yōu)化技術(shù):從算法到應(yīng)用(英文版)》較系統(tǒng)地討論了遺傳算法和分布估計(jì)算法的基本理論,并在二進(jìn)制搜尋空間實(shí)驗(yàn)性地比較了幾種分布估算法。在此基礎(chǔ)上深入地論述了構(gòu)建一類新的分布估計(jì)算法的思路和實(shí)現(xiàn)方法,最后介紹了分布估計(jì)算法在計(jì)算機(jī)科學(xué)、資源管理等領(lǐng)域的一些成功應(yīng)用實(shí)例及分布估計(jì)算法的幾種有效改進(jìn)方法。

作者簡(jiǎn)介

暫缺《基于種群概率模型的優(yōu)化技術(shù):從算法到應(yīng)用(英文版)》作者簡(jiǎn)介

圖書目錄

Chapter 1 Fundamentals and Literature
  1.1 Optimization Problems
  1.2 Canonical Genetic Algorithm
  1.3 Individual Representations
  1.4 Mutation
  1.5 Recombination
  1.6 Population Models
  1.7 Parent Selection
  1.8 Survivor Selection
  1.9 Summary
  
  Chapter 2 The Probabilistic Model -building Genetic Algorithms
  2.1 Introduction
  2.2 A Simple Optimization Example
  2.3 Different EDA Approaches
  2.4 Optimization in Continuous Domains with EDAs
  2.5 Summary
  
  Chapter 3 An Empirical Comparison of EDAs in Binary Search Spaces
  3.1 Introduction
  3.2 Experiments
  3.3 Test Functions for the Convergence Reliability
  3.4 Experimental Results
  3.5 Summary
  
  Chapter 4 Development of a New Type of EDAs Based on Principle of Maximum Entropy
  4.1 Introduction
  4.2 Entropy and Schemata
  4.3 The Idea of the Proposed Algorithms
  4.4 How Can the Estimated Distribution be Computed and Sampled?
  4.5 New Algorithms
  4.6 Empirical Results
  4.7 Summary
  
  Chapter 5 Applying Continuous EDAs to Optimization Problems
  5.1 Introduction
  5.2 Description of the Optimization Problems
  5.3 EDAs to Test
  5.4 Experimental Description
  5.5 Summary
  
  Chapter 6 Optimizing Curriculum Scheduling Problem Using EDA
  6.1 Introduction
  6.2 Optimization Problem of Curriculum Scheduling
  6.3 Methodology
  6.4 Experimental Results
  6.5 Summary
  
  Chapter 7 Recognizing Human Brain Images Using EDAs
  7.1 Introduction
  7.2 Graph Matching Problem
  7.3 Representing a Matching as a Permutation
  7.4 Apply EDAs to Obtain a Permutation that Symbolizes the Solution
  7.5 Obtaining a Permutation with Continuous EDAs
  7.6 Experimental Results
  7.7 Summary
  
  Chapter 8 Optimizing Dynamic Pricing Problem with EDAs and GA
  8.1 Introduction
  8.2 Dynamic Pricing for Resource Management
  8.3 Modeling Dynamic Pricing
  8.4 An EA Approaches to Dynamic Pricing
  8.5 Experiments and Results
  8.6 Summary
  
  Chapter 9 Improvement Techniques of EDAs
  9.1 Introduction
  9.2 Tradeoffs are Exploited by Efficiency-Improvement Techniques
  9.3 Evaluation Relaxation: Designing Adaptive Endogenous Surrogates
  9.4 Time Continuation: Mutation in EDAs
  9.5 Summary

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)