統(tǒng)計物理是利用物質(zhì)基本組成成份來研究物質(zhì)的整體性質(zhì),它在量子力學(xué)發(fā)展中發(fā)揮了重要的作用。本書根據(jù)作者20多年來在麻省理工學(xué)院講授粒子統(tǒng)計物理的課程講義編寫而成,主要講解統(tǒng)計物理學(xué)的基本概念和處理實際問題的方法。在講述完熱力學(xué)基礎(chǔ)后,作者專門講解了常用數(shù)學(xué)工具如概率論和中心極限定理。本書內(nèi)容還包括相互作用粒子,van der Waals方程及其推導(dǎo),經(jīng)典和量子統(tǒng)計力學(xué)以及信息論中的相關(guān)問題。本書附有習(xí)題,并在全書結(jié)尾處給出部分答案。閱讀本書時可以參考作者的另外一本專著《場的統(tǒng)計物理》,主要介紹利用重整化群等非平均場方法研究標度律和臨界現(xiàn)象。目次:熱力學(xué);概率論;氣體動力學(xué)理論;經(jīng)典統(tǒng)計力學(xué);相互作用的粒子;量子統(tǒng)計力學(xué);理想量子氣體;部分習(xí)題解答;索引。
作者簡介
MEHRAN KARDAR is Professor of Physics at MIT, where he has taught and researched in the field of statistical physics for the past 20 years. He received his B.A. at Cambridge, and gained his Ph.D. at MIT. Professor Kardar has held research and visiting positions as a junior Fellow at Harvard,Guggenheim Fellow at Oxford, UCSB, and at Berkeley as a Miller Fellow.
圖書目錄
Preface 1 Thermodynamics 1.1 Introduction 1.2 The zeroth law 1.3 The first law 1.4 The second law 1.5 Carnot engines 1.6 Entropy 1.7 Approach to equilibrium and thermodynamic potentials 1.8 Useful mathematical results 1.9 Stability conditions 1.10 The third law Problems 2 Probability 2.1 General definitions 2.2 One random variable 2.3 Some important probability distributions 2.4 Many random variables 2.5 Sums of random variables and the central limit theorem 2.6 Rules for large numbers 2.7 Information, entropy, and estimation Problems 3 Kinetic theory of gases 3.1 General definitions 3.2 Liouville's theorem 3.3 The Bogoliubov-Born--Green-Kirkwood-Yvon hierarchy 3.4 The Boltzmann equation 3.5 The H-theorem and irreversibility 3.6 Equilibrium properties 3.7 Conservation laws 3.8 Zeroth-order hydrodynamics 3.9 First-order hydrodynamics Problems 4 Classical statistical mechanics 4.1 General definitions 4.2 The microcanonical ensemble 4.3 Two-level systems 4.4 The ideal gas 4.5 Mixing entropy and the Gibbs paradox 4.6 The canonical ensemble 4.7 Canonical examples 4.8 The Gibbs canonical ensemble 4.9 The grand canonical ensemble Problems 5 Intenmeting particles 5.1 The cumulant expansion 5.2 The cluster expansion 5.3 The second virial coefficient and van der Waals equation 5.4 Breakdown of the van der Waals equation 5.5 Mean-field theory of condensation 5.6 Variational methods 5.7 Corresponding states 5.8 Critical point behavior Problems 6 Quantum statistical mechanics 6.1 Dilute polyatomic gases 6.2 Vibrations of a solid 6.3 Black-body radiation 6.4 Quantum microstates 6.5 Quantum macrostates Problems 7 Ideal quantum gases 7.1 Hilbert space of identical particles 7.2 Canonical formulation 7.3 Grand canonical formulation 7.4 Non-relativistic gas 7.5 The degenerate fermi gas 7.6 The degenerate bose gas 7.7 Superfiuid Hen Problems Solutions to selected problems Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Index