Technical aspects of bosonization、A simple case of Bose-Fermi equivalence: Jordan-Wigner、Transformation、One-dimensional fermion States near the Fermi points、Chiral anomaly、Anomalous commutators、Ganssian model. Lagrangian formulation、Bosonization、Interaction with an electromagnetic field; gauge invariance、Conformal symmetry and finite size effects、Gaussian model in the Hamiltonian formulation、Virasoro algebra、Ward identities等等。
作者簡(jiǎn)介
暫缺《玻色化和強(qiáng)關(guān)聯(lián)系統(tǒng)》作者簡(jiǎn)介
圖書(shū)目錄
Preface Acknowledgements Part I: Technical aspects of bosonization A simple case of Bose-Fermi equivalence: Jordan-Wigner ransformation One-dimensional fermion tates near the Fermi points Chiral anomaly Anomalous commutators Ganssian model. Lagrangian formulation Bosonization Interaction with an electromagnetic field; gauge invariance Conformal symmetry and finite size effects Gaussian model in the Hamiltonian formulation Virasoro algebra Ward identities Subalgebra sl(2) Structure of Hilhert space in conformal theories Differential equations for correlation functions Dotsenko——Fateev bosonization scheme for the minimal models Current (Kac-Moody) algebras; the first assault Sugawara Hamiltonian for Wess-Zumino-Novikov-Witten model Knizhnik-Zamolodchikov (KZ) equations Relevant and irrelevant fields Bose-Einstein Condensation in two dimensions; Beresinskii- Kesterlitz-Thouless transition The sine-Gordon model The renormalization group analysis Exact solution of the sine-Gordon model Spin S-1/2 Heisenberg-lsing chain Explicit expression for the dynamical magnetic susceptibility Ising model More about the WZNW model Special cases 1.1 SU1(2) WZNW model as a Gaussian model 1.2 SU2(2) WZNW model and the Ising model 1.3 SU4(2) as a theory of two bosonic fields 1.4 SUI0(2) as a theory of three bosonic fields Deformation of the WZNW model and coset constructions Non-Abelian bosznization WZNW model in the Lagrangian formulation Derivation of the Lagrangian Calculation of a nontrivial determinant Part II: Application of the bosonization technique to physical models in (1 + l)-dimemions Interacting fermions with spin Spin-l/2 Tomonaga-Luttinger liquid Instabilities of a Tomonaga-Lnttinger liquid Electron-phonon interaction 1.1 Incommensurate band filling, the effect on K 1.2 Commensurate band filling 1.3 Appendix Spectral gap in the spin sector Optical conductivity Gap in the charge sector at half-filling and the case of small doping Appendix. RG equations for the model of one-dimensional electrons from the SU(2) current algebra Interacting fermions with broken spin rotational symmetry U(l)-symmetric Thirring model: relation to sine-Gordon and massive Thirring models XYZ Thirring model Spin correlation functions Theroleofmagneticfield IV.ISpin-floptransitionintheXYZmodel IV.2Toymodelforanorbitalantfferromagnet WhatmayhappenwithaTomonaga-Luttingerfiquidinthree imensions Appendix.FermionicGreensfunction 1.1 oordinatespaceGreensfunction 1.2 hespectralfunction(vc>vs) 1.3 ouriertransformoftheGreensfunction(re>v) 1.4 hespectralfunction,vs>vc 1.5 ouriertransformofGreensfunction,vs>vc TwoweaklycoupledTomonaga-Luttingerliquids;spinlemcase Spinliquidsinonedimension:exampleofspinladders Couplingofidenticalchains;theAbelianbosonization Correlationfunctionsfortheidenticalchains II.lStaggeredsusceptibilityoftheconventional(Haldane)spin iquid II.2Dimerizedspinliquid Inequivalentchains;non-Abelianbosonization Stringorderparameterinthespin-laddermodel AppendixA.Thetopologicaltermemergingfromthe Wess-Zuminoterm AppendixB.HiddenZ2~Z2symmetryandstringorderparameter inthebond-alternatingS——-1/2Heisenbergchain Spin-l/2Heisenbergchainwithalternatingexchange Appendix.Multiparticleformfactors Superconductivityinadopedspinliquid Bosonizationandfermionization Superconductingfluctuations Conclusions Appendix.Conditionsforsuppressionofthesingle-particletunneling EdgestatesinthequantumHalleffect PartⅢ Singleimpurityproblems Potentialsattering Introduction Reduction of the local scattering problem to one dimension The scattering phase X-ray edge problem (Fermi liquids) Introduction Statement of the problem II.1 Many-body formulation I1.2 One-particle formulation Linked dusters expansion Nozi6res-De Dominicis solution Exact solution for the overlap integral Bosonization approach to the X-ray edge problem VI.1 Boundary condition changing operator (chiral anomaly) VI.2 X-ray response functions via bosonization Appendix A. Parquet approximation Appendix B. The Wiener-Hopf method Appendix C. Orthogonality of Slater determinants Impurities in a Tomonaga-Luttinger liquid Introduction Weak-coupling analysis of a single impurity II.1 Bosonization of the impurity Hamiltonian II.2 Lagrangian formulation: local action 11.3 Renormalization group analysis of local operators Strong-coupling analysis III.1 Open boundary bosonization 111.2 Strong-coupling fixed point Exact solution at K=1/2 and the conductance Relation of the impurity backscattering model to the Caldeira-eggett model X-ray edge problem in Tomonaga-Luttinger liquids Multi-channel Kondo problem Introduction Qualitative analysis The Toulouse limit The Emery-Kivelson solution IV.I Greens functions and zero-field free energy IV.2 Magnetic field effects IV.3 Wilson ratio The Toulouse limit for the four-channel Kondo model Coulomb blockade VI.1 One-dimensional electrons in point contacts VI.2 Coulomb blockade and two-channel Kondo model General bibliography