Preface to the second edition Preface to the first edition Notation 1 The particle physicist's view of Nature 1.1 Introduction 1.2 The construction of the Standard Model 1.3 Leptons 1.4 Quarks and systems of quarks 1.5 Spectroscopy of systems of light quarks 1.6 More quarks 1.7 Quark colour 1.8 Electron scattering from nucleons 1.9 Particle accelerators 1.10 Units 2 Lorentz transformations 2.1 Rotations, boosts and proper Lorentz transformations 2.2 Scalars, contravariant and covariant four-vectors 2.3 Fields 2.4 The Levi-Civita tensor 2.5 Time reversal and space inversion 3 The Lagrangian formulation of mechanics 3.1 Hamilton's principle 3.2 Conservation of energy 3.3 Continuous systems 3.4 A Lorentz covariant field theory 3.5 The Klein-Gordon equation 3.6 The energy-momentum tensor 3.7 Complex scalar fields 4 Classical electromagnetism 4.1 Maxwell's equations 4.2 A Lagrangian density for electromagnetism 4.3 Gauge transformations 4.4 Solutions of Maxwell's equations 4.5 Space inversion 4.6 Charge conjugation 4.7 Intrinsic angular momentum of the photon 4.8 The energy density of the electromagnetic field 4.9 Massive vector fields 5 The Dirac equation and the Dirac field 5.1 The Dirac equation 5.2 Lorentz transformations and Lorentz invariance 5.3 The parity transformation 5.4 Spinors 5.5 The matrices 5.6 Making the Lagrangian density real 6 Free space solutions of the Dirac equation 6.1 A Dirac particle at rest 6.2 The intrinsic spin of a Dirac particle 6.3 Plane waves and helicity 6.4 Negative energy solutions 6.5 The energy and momentum of the Dirac field 6.6 Dirac and Majorana fields 6.7 The E ] ] m limit, neutrinos 7 Electrodynamics 7.1 Probability density and probability current 7.2 The Dirac equation with an electromagnetic field 7.3 Gauge transformations and symmetry 7.4 Charge conjugation 7.5 The electrodynamics of a charged scalar field 7.6 Particles at low energies and the Dirac magnetic moment 8 Quantising fields: QED 8.1 Boson and fermion field quantisation 8.2 Time dependence 8.3 Perturbation theory 8.4 Renornmalisation and renormalisable field theories 8.5 The magnetic moment of the electron 8.6 Quantisation in the Standard Model 9 The weak interaction: !ow energy phenomenology 9.1 Nuclear beta decay 9.2 Pion decay 9.3 Conservation of lepton number 9.4 Muon decay 9.5 The interactions of muon neutrinos with electrons 10 Symmetry breaking in model theories 10.1 Global symmetry breaking and Goldstone bosons 10.2 Local symmetry breaking and the Higgs boson 11 Massive gauge fields 11.1 SU(2) symmetry 11.2 The gauge fields 11.3 Breaking the SU(2) symmetry 11.4 Identification of the fields 12 The Weinberg——Salam electroweak theory for leptons 12.1 Lepton doublets and the Weinberg-Salam theory 12.2 Lepton coupling to the W 12.3 Lepton coupling to the Z 12.4 Conservation of lepton number and conservation of charge 12.5 CP symmetry 12.6 Mass terms in : an attempted generalisation 13 Experimental tests of the Weinberg——Salam theory 13.1 The search for the gauge bosons 13.2 The W bosons 13.3 The Z boson 13.4 The number of lepton families 13.5 The measurement of partial widths 13.6 Left-right production cross-section asymmetry and lepton decay symmetry of the Z boson 14 The electromagnetic and weak interactions of quarks 14.1 Construction of the Lagrangian density 14.2 Quark masses and the Kobayashi-Maskawa mixing matrix 14.3 The parameterisation of the KM matrix 14.4 CP symmetry and the KM matrix 14.5 The weak interaction in the low energy limit 15 The hadronic decays of the Z and W bosons 15.1 Hadronic decays of the Z 15.2 Asymmetry in quark production 15.3 Hadronic decays of the W 16 The theory of strong interactions: quantum chromodynamics 16.1 A local SU(3) gauge theory 16.2 Colour gauge transformations on baryons and mesons 16.3 Lattice QCD and asymptotic freedom 16.4 The quark-antiquark interaction at short distances 16.5 The conservation of quarks 16.6 Isospin symmetry 16.7 Chiral symmetry 17 Quantum chromodynamics: calculations 17.1 Lattice QCD and confinement 17.2 Lattice QCD and hadrons 17.3 Perturbative QCD and deep inelastic scattering 17.4 Perturbative QCD and e+e- collider physics 18 The Kobayashi-Maskawa matrix 18.1 Leptonic weak decays of hadrons 18.2 |Vud| and nuclear decay 18.3 More leptonic decays 18.4 CP symmetry violation in neutral kaon decays 18.5 B meson decays and B,B mixing 18.6 The CPTtheorem