注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術自然科學數(shù)學概型的幾何

概型的幾何

概型的幾何

定 價:¥39.00

作 者: (美)艾森邦德 著
出版社: 世界圖書出版公司
叢編項:
標 簽: 幾何與拓撲

ISBN: 9787510004742 出版時間: 2010-01-01 包裝: 平裝
開本: 24開 頁數(shù): 294 字數(shù):  

內(nèi)容簡介

  概型理論是代數(shù)幾何的基礎,在代數(shù)幾何的經(jīng)典領域不變理論和曲線模中有了較好的發(fā)展。將代數(shù)數(shù)論和代數(shù)幾何有機的結合起來,實現(xiàn)了早期數(shù)論學者們的愿望。這種結合使得數(shù)論中的一些主要猜測得以證明?!陡判偷膸缀危ㄓ⑽陌妫分荚诮⑵鸾?jīng)典代數(shù)幾何基本教程和概型理論之間的橋梁。例子講解詳實,努力挖掘定義背后的深層次東西。練習加深讀者對內(nèi)容的理解。學習《概型的幾何(英文版)》的起點低,了解交換代數(shù)和代數(shù)變量的基本知識即可?!陡判偷膸缀危ㄓ⑽陌妫方沂玖烁判秃推渌麕缀斡^點,如流形理論的聯(lián)系。了解這些觀點對學習《概型的幾何(英文版)》是相當有益的,雖然不是必要。目次:基本定義;例子;射影概型;經(jīng)典結構;局部結構;概型和函子。

作者簡介

暫缺《概型的幾何》作者簡介

圖書目錄

I Basic Definitions
I.1 Affine Schemes
I.1.1 Schemes as Sets
I.1.2 Schemes as Topological Spaces
I.1.3 An Interlude on Sheaf Theory References for the Theory of Sheaves
I.1.4 Schemes as Schemes (Structure Sheaves)
I.2 Schemes in General
I.2.1 Subschemes
I.2.2 The Local Ring at a Point
I.2.3 Morphisms
I.2.4 The Gluing Construction Projective Space
I.3 Relative Schemes
I.3.1 Fibered Products
I.3.2 The Category of S-Schemes
I.3.3 Global Spec
I.4 The Functor of Points
II Examples
II.1 Reduced Schemes over Algebraically Closed Fields
II. 1.1 Affine Spaces
II.1.2 Local Schemes
II.2 Reduced Schemes over Non-Algebraically Closed Fields
II.3 Nonreduced Schemes
II.3.1 Double Points
II.3.2 Multiple Points Degree and Multiplicity
II.3.3 Embedded Points Primary Decomposition
II.3.4 Flat Families of Schemes
Limits
Examples
Flatness
II.3.5 Multiple Lines
II.4 Arithmetic Schemes
II.4.1 Spec Z
II.4.2 Spec of the Ring of Integers in a Number Field
II.4.3 Affine Spaces over Spec Z
II.4.4 A Conic over Spec Z
II.4.5 Double Points in Al
III Projective Schemes
III.1 Attributes of Morphisms
III.1.1 Finiteness Conditions
III.1.2 Properness and Separation
III.2 Proj of a Graded Ring
III.2.1 The Construction of Proj S
III.2.2 Closed Subschemes of Proj R
III.2.3 Global Proj
Proj of a Sheaf of Graded 0x-Algebras
The Projectivization P(ε) of a Coherent Sheaf ε
III.2.4 Tangent Spaces and Tangent Cones
Affine and Projective Tangent Spaces
Tangent Cones
III.2.5 Morphisms to Projective Space
III.2.6 Graded Modules and Sheaves
III.2.7 Grassmannians
III.2.8 Universal Hypersurfaces
III.3 Invariants of Projective Schemes
III.3.1 Hilbert Functions and Hilbert Polynomials
1II.3.2 Flatness Il: Families of Projective Schemes
III.3.3 Free Resolutions
III.3.4 Examples
Points in the Plane
Examples: Double Lines in General and in p3
III.3.5 BEzouts Theorem
Multiplicity of Intersections
III.3.6 Hilbert Series
IV Classical Constructions
IV.1 Flexes of Plane Curves
IV.I.1 Definitions
IV.1.2 Flexes on Singular Curves
IV.1.3 Curves with Multiple Components
IV.2 Blow-ups
IV.2.1 Definitions and Constructions
An Example: Blowing up the Plane
Definition of Blow-ups in General
The Blowup as Proj
Blow-ups along Regular Subschemes
IV.2.2 Some Classic Blow-Ups
IV.2.3 Blow-ups along Nonreduced Schemes
Blowing Up a Double Point
Blowing Up Multiple Points
The j-Function
IV.2.4 Blow-ups of Arithmetic Schemes
IV.2.5 Project: Quadric and Cubic Surfaces as Blow-ups
IV.3 Fano schemes
IV.3.1 Definitions
IV.3.2 Lines on Quadrics
Lines on a Smooth Quadric over an Algebraically
Closed Field
Lines on a Quadric Cone
A Quadric Degenerating to Two Planes
More Examples
IV.3.3 Lines on Cubic Surfaces
IV.4 Forms
V Local Constructions
V.1 Images
V.I.1 The Image of a Morphism of Schemes
V.1.2 Universal Formulas
V.1.3 Fitting Ideals and Fitting Images
Fitting Ideals
Fitting Images
V.2 Resultants
V.2:l Definition of the Resultant
V.2.2 Sylvesters Determinant
V.3 Singular Schemes and Discriminants
V.3.1 Definitions
V.3.2 Discriminants
V.3.3 Examples
V.4 Dual Curves
V.4.1 Definitions
V.4.2 Duals of Singular Curves
V.4.3 Curves with Multiple Components
V.5 Double Point Loci
VI Schemes and Functors
VI.1 The Functor of Points
VI.I.1 Open and Closed Subfunctors
VI.1.2 K-Rational Points
VI.1.3 Tangent Spaces to a Functor
VI.1.4 Group Schemes
VI.2 Characterization of a Space by its ~nctor of Points
VI.2.1 Characterization of Schemes among Functors
VI.2.2 Parameter Spaces
The Hilbert Scheme
Examples of Hilbert Schemes
Variations on the Hilbert Scheme Construction.
VI.2.3 Tangent Spaces to Schemes in Terms of Their Func
tors of Points
Tangent Spaces to Hilbert Schemes
Tangent Spaces to Fano Schemes
VI.2.4 Moduli Spaces
References
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號