注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)微分幾何基礎(chǔ)

微分幾何基礎(chǔ)

微分幾何基礎(chǔ)

定 價(jià):¥65.00

作 者: (美)朗 著
出版社: 世界圖書出版公司
叢編項(xiàng):
標(biāo) 簽: 微積分

ISBN: 9787510005404 出版時(shí)間: 2010-01-01 包裝: 平裝
開本: 16開 頁數(shù): 535 字?jǐn)?shù):  

內(nèi)容簡介

  《微分幾何基礎(chǔ)(英文版)》介紹了微分拓?fù)洹⑽⒎謳缀我约拔⒎址匠痰幕靖拍?。《微分幾何基礎(chǔ)(英文版)》的基本思想源于作者早期的《微分和黎曼流形》,但重點(diǎn)卻從流形的一般理論轉(zhuǎn)移到微分幾何,增加了不少新的章節(jié)。這些新的知識(shí)為Banach和Hilbert空間上的無限維流形做準(zhǔn)備,但一點(diǎn)都不覺得多余,而優(yōu)美的證明也讓讀者受益不淺。在有限維的例子中,討論了高維微分形式,繼而介紹了Stokes定理和一些在微分和黎曼情形下的應(yīng)用。給出了Laplacian基本公式,展示了其在浸入和浸沒中的特征。書中講述了該領(lǐng)域的一些主要基本理論,如:微分方程的存在定理、唯一性、光滑定理和向量域流,包括子流形管狀鄰域的存在性的向量叢基本理論,微積分形式,包括經(jīng)典2-形式的辛流形基本觀點(diǎn),黎曼和偽黎曼流形協(xié)變導(dǎo)數(shù)以及其在指數(shù)映射中的應(yīng)用,Cartan-Hadamard定理和變分微積分第一基本定理。目次:(第一部分)一般微分方程;微積分;流形;向量叢;向量域和微分方程;向量域和微分形式運(yùn)算;Frobenius定理;(第二部分)矩陣、協(xié)變導(dǎo)數(shù)和黎曼幾何:矩陣;協(xié)變導(dǎo)數(shù)和測(cè)地線;曲率;二重切線叢的張量分裂;曲率和變分公式;半負(fù)曲率例子;自同構(gòu)和對(duì)稱;浸入和浸沒;(第三部分)體積形式和積分:體積形式;微分形式的積分;Stokes定理;Stokes定理的應(yīng)用;譜理論。

作者簡介

暫缺《微分幾何基礎(chǔ)》作者簡介

圖書目錄

Foreword
Acknowledgments
PART Ⅰ
General Differential Theory,
CHAPTER Ⅰ
Oifferenlial Calculus
Categories
Topological Vector Spaces
Derivatives and Composition of Maps
Integration and Taylors Formula
The Inverse Mapping Theorem
CHAPTER Ⅱ
Manifolds
Atlases, Charts, Morphisms
Submanifolds, Immersions, Submersions
Partitions of Unity
Manifolds with Boundary
CHAPTER Ⅲ
Vector Bundles
Definition, Pull Backs
The Tangent Bundle
Exact Sequences of Bundles
Operations on Vector Bundles
Splitting of Vector Bundles
CHAPTER Ⅳ
Vector Fields and Differential Equations
Existence Theorem for Differential Equations .
Vector Fields, Curves, and Flows
Sprays
The Flow of a Spray and the Exponential Map
Existence of Tubular Neighborhoods
Uniqueness of Tubular Neighborhoods
CHAPTER Ⅴ
Operations on Vector Fields and Differential Forms
Vector Fields, Differential Operators, Brackets
Lie Derivative
Exterior Derivative
The Poincar Lemma
Contractions and Lie Derivative
Vector Fields and l-Forms Under Self Duality
The Canonical 2-Form
Darbouxs Theorem
CHAPTER Ⅵ
The Theorem of Frobenius
Statement of the Theorem
Differential Equations Depending on a Parameter
Proof of the Theorem
The Global Formulation
Lie Groups and Subgroups
PART Ⅱ
Metrics, Covariant Derivatives, and Riemannian Geometry
CHAPTER Ⅶ
Metrics
Definition and Functoriality
The Hilbert Group
Reduction to the Hilbert Group
Hilbertian Tubular Neighborhoods
The Morse-Palais Lemma
The Riemannian Distance
The Canonical Spray
CHAPTER Ⅷ
Covariant Derivatives and Geodesics.
Basic Properties
Sprays and Covariant Derivatives
Derivative Along a Curve and Parallelism
The Metric Derivative
More Local Results on the Exponential Map
Riemannian Geodesic Length and Completeness
CHAPTER Ⅸ
Curvature
The Riemann Tensor
Jacobi Lifts
Application of Jacobi Lifts to Texpx
Convexity Theorems
Taylor Expansions
CHAPTER Ⅹ
Jacobi Lifts and Tensorial Splitting of the Double Tangent Bundle
Convexity of Jacobi Lifts
Global Tubular Neighborhood of a Totally Geodesic Submanifold.
More Convexity and Comparison Results
Splitting of the Double Tangent Bundle
Tensorial Derivative of a Curve in TX and of the Exponential Map
The Flow and the Tensorial Derivative
CHAPTER XI
Curvature and the Variation Formula
The Index Form, Variations, and the Second Variation Formula
Growth of a Jacobi Lift
The Semi Parallelogram Law and Negative Curvature
Totally Geodesic Submanifolds
Rauch Comparison Theorem
CHAPTER XII
An Example of Seminegative Curvature
Pos,,(R) as a Riemannian Manifold
The Metric Increasing Property of the Exponential Map
Totally Geodesic and Symmetric Submanifolds
CHAPTER XIII
Automorphisms and Symmetries.,
The Tensorial Second Derivative
Alternative Definitions of Killing Fields
Metric Killing Fields
Lie Algebra Properties of Killing Fields
Symmetric Spaces
Parallelism and the Riemann Tensor
CHAPTER XlV
Immersions and Submersions .
The Covariant Derivative on a Submanifoid
The Hessian and Laplacian on a Submanifold
The Covariant Derivative on a Riemhnnian Submersion .
The Hessian and Laplacian on a Riemannian Submersion
The Riemann Tensor on Submanifolds
The Riemann Tensor on a Riemannian Submersion
PART III
Volume Forms and Integration
CHAPTER XV
Volume Forms
Volume Forms and the Divergence
Covariant Derivatives
The Jacobian Determinant of the Exponential Map
The Hodge Star on Forms
Hodge Decomposition of Differential Forms
Volume Forms in a Submersion
Volume Forms on Lie Groups and Homogeneous Spaces
Homogeneously Fibered Submersions
CHAPTER XVI
Integration of Differential Forms
Sets of Measure 0
Change of Variables Formula
Orientation
The Measure Associated with a Differential Form
Homogeneous Spaces
CHAPTER XVII
Stokes Theorem
Stokes Theorem for a Rectangular Simplex
Stokes Theorem on a Manifold
Stokes Theorem with Singularities
CHAPTER XVIII
Applications of Stokes Theorem
The Maximal de Rham Cohomology
Mosers Theorem
The Divergence Theorem
The Adjoint of d for Higher Degree Forms
Cauchys Theorem
The Residue Theorem
APPENDIX
The Spectral Theorem,
Hilbert Space
Functionals and Operators
Hermitian Operators
Bibliography
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)