注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)曲面幾何學(xué)

曲面幾何學(xué)

曲面幾何學(xué)

定 價(jià):¥28.00

作 者: (澳)史迪威 著
出版社: 世界圖書出版公司
叢編項(xiàng):
標(biāo) 簽: 幾何與拓?fù)?/td>

ISBN: 9787510005312 出版時(shí)間: 2010-01-01 包裝: 平裝
開本: 24開 頁數(shù): 216 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《曲面幾何學(xué)》揭示了幾何和拓?fù)渲g的相互關(guān)系,為廣大讀者介紹了現(xiàn)代幾何的基本概況。書的開始介紹了三種簡(jiǎn)單的面,歐幾里得面、球面和雙曲平面。運(yùn)用等距同構(gòu)群的有效機(jī)理,并且將這些原理延伸到常曲率的所有可以用合適的同構(gòu)方法獲得的曲面。緊接著主要是從拓?fù)浜腿赫摰挠^點(diǎn)出發(fā),講述一些歐幾里得曲面和球面的分類,較為詳細(xì)地討論了一些有雙曲曲面。由于常曲率曲面理論和現(xiàn)代數(shù)學(xué)有很大的聯(lián)系,該書是一本理想的學(xué)習(xí)幾何的入門教程,用最簡(jiǎn)單易行的方法介紹了曲率、群作用和覆蓋面。這些理論融合了許多經(jīng)典的概念,如,復(fù)分析、微分幾何、拓?fù)洹⒔M合群論和比較熱門的分形幾何和弦理論?!肚鎺缀螌W(xué)》內(nèi)容自成體系,在預(yù)備知識(shí)部分包括一些線性代數(shù)、微積分、基本群論和基本拓?fù)洹?/div>

作者簡(jiǎn)介

暫缺《曲面幾何學(xué)》作者簡(jiǎn)介

圖書目錄

Preface
Chapter 1.The Euclidean Plane
1.1 Approaches to Euclidean Geometry
1.2 Isometries
1.3 Rotations and Reflections
1.4 The Three Reflections Theorem
1.5 Orientation-Reversing Isometries
1.6 Distinctive Features of Euclidean Geometry
1.7 Discussion
Chapter 2.Euclidean Surfaces
2.1 Euclid on Manifolds
2.2 The Cylinder
2.3 The Twisted Cylinder
2.4 The Torus and the Klein Bottle
2.5 Quotient Surfaces
2.6 A Nondiscontinuous Group
2.7 Euclidean Surfaces
2.8 Covering a Surface by the Plane
2.9 The Covering Isometry Group
2.10 Discussion
Chapter 3.The Sphere
3.1 The Sphere S2 in R3
3.2 Rotations
3.3 Stereographic Projection
3.4 Inversion and the Complex Coordinate on the Sphere
3.5 Reflections and Rotations as Complex Functions
3.6 The Antipodal Map and the Elliptic Plane
3.7 Remarks on Groups, Spheres and Projective Spaces
3.8 The Area of a Triangle
3.9 The Regular Polyhedra
3.10 Discussion
Chapter 4.The Hyperbolic Plane
4.1 Negative Curvature and the Half-Plane
4.2 The Half-Plane Model and the Conformal Disc Model
4.3 The Three Reflections Theorem
4.4 Isometries as Complex Fnctions
4.5 Geometric Description of Isometries
4.6 Classification of Isometries
4.7 The Area of a Triangle
4.8 The Projective Disc Model
4.9 Hyperbolic Space
4.10 Discussion
Chapter 5.Hyperbolic Surfaces
5.1 Hyperbolic Surfaces and the Killing-Hopf Theorem
5.2 The Pseudosphere
5.3 The Punctured Sphere
5.4 Dense Lines on the Punctured Sphere
5.5 General Construction of Hyperbolic Surfaces from Polygons
5.6 Geometric Realization of Compact Surfaces
5.7 Completeness of Compact Geometric Surfaces
5.8 Compact Hyperbolic Surfaces
5.9 Discussion
Chapter 6.Paths and Geodesics
6.1 Topological Classification of Surfaces
6.2 Geometric Classification of Surfaces
6.3 Paths and Homotopy
6.4 Lifting Paths and Lifting Homotopies
6.5 The Fundamental Group
6.6 Generators and Relations for the Fundamental Group
6.7 Fundamental Group and Genus
6.8 Closed Geodesic Paths
6.9 Classification of Closed Geodesic Paths
6.10 Discussion
Chapter 7.Planar and Spherical TesseUations
7.1 Symmetric Tessellations
7.2 Conditions for a Polygon to Be a Fundamental Region
7.3 The Triangle Tessellations
7.4 Poincarrs Theorem for Compact Polygons
7.5 Discussion
Chapter 8.Tessellations of Compact Surfaces
8.1 Orbifolds and Desingularizations
8.2 From Desingularization to Symmetric Tessellation
8.3 Desingularizations as (Branched) Coverings
8.4 Some Methods of Desingularization
8.5 Reduction to a Permutation Problem
8.6 Solution of the Permutation Problem
8.7 Discussion
References
Index
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)