注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)自然科學數(shù)學非線性泛函分析及其應用·第2B卷:非線性單調(diào)算子

非線性泛函分析及其應用·第2B卷:非線性單調(diào)算子

非線性泛函分析及其應用·第2B卷:非線性單調(diào)算子

定 價:¥89.00

作 者: (德)宰德勒 著
出版社: 世界圖書出版公司
叢編項:
標 簽: 函數(shù)

ISBN: 9787510005213 出版時間: 2009-08-01 包裝: 精裝
開本: 24開 頁數(shù): 1202 字數(shù):  

內(nèi)容簡介

  這部書講清楚了泛函分析理論對數(shù)學其他領(lǐng)域的應用。例如,第2A卷講述線性單調(diào)算子。他從橢圓型方程的邊值問題出發(fā),講問題的古典解,由于具體物理背景的需要,問題須作進一步推廣,而需要討論問題的廣義解。這種方法背后的分析原理是什么?其實就是完備化思想的一個應用!將古典問題所依賴的連續(xù)函數(shù)空間,完備化成為Sobolev空間,則可討論問題的廣義解。在這種討論中間,我們可以看到Hilbert空間的作用。書中不僅有這種理論討論,而且還講了怎樣計算問題的近似解(Ritz方法)。這部書講清楚了分析理論在諸多領(lǐng)域(如物理學、化學、生物學、工程技術(shù)和經(jīng)濟學等等)的廣泛應用。例如,第3卷講解變分方法和優(yōu)化,它從函數(shù)極值問題開始,講到變分問題及其對于Euler微分方程和Hammerstein積分方程的應用;講到優(yōu)化理論及其對于控制問題(如龐特里亞金極大值原理)、統(tǒng)計優(yōu)化、博弈論、參數(shù)識別、逼近論的應用;講了凸優(yōu)化理論及應用;講了極值的各種近似計算方法。比如第4卷,講物理應用,寫作原理是:由物理事實到數(shù)學模型;由數(shù)學模型到數(shù)學結(jié)果;再由數(shù)學結(jié)果到數(shù)學結(jié)果的物理解釋;最后再回到物理事實。再次,該書由淺入深地講透了基本理論的發(fā)展歷程及走向,它既講清楚了所涉及學科的具體問題,也講清楚了其背后的數(shù)學原理及其作用。數(shù)學理論講得也非常深入,例如,不動點理論,就從Banach不動點定理講到Schauder不動點定理,以及Bourbaki—Kneser不動點定理等等。這套書的寫作起點很低,具備本科數(shù)學水平就可以讀;應用都是從最簡單情形入手,應用領(lǐng)域的讀者也可以讀;全書材料自足,各部分又盡可能保持獨立;書后附有極其豐富的參考文獻及一些文獻評述;該書文字優(yōu)美,引用了許多大師的格言,讀之你會深受啟發(fā)。這套書的優(yōu)點不勝枚舉,每個與數(shù)理學科相關(guān)的人,搞理論的,搞應用的,搞研究的,搞教學的,都可讀該書,哪怕只是翻一翻,都不會空手而返!

作者簡介

暫缺《非線性泛函分析及其應用·第2B卷:非線性單調(diào)算子》作者簡介

圖書目錄

Preface to Part II/B
GENERALIZATION TO NONLINEAR STATIONARY PROBLEMS
Basic Ideas of the Theory of Monotone Operators
CHAPTER 25 Lipschitz Continuous, Strongly Monotone Operators, the Projection-lteration Method, and Monotone Potential Operators
25.1.Sequences of k-Contractive Operators
25.2.The Projection Iteration Method for k-Contractive Operators
25.3.Monotone Operators
25.4.The Main Theorem on Strongly Monotone Operators, and the Projection-Iteration Method
25.5.Monotone and Pseudomonotone Operators, and the Calculus of Variations
25.6.The Main Theorem on Monotone Potential Operators
25.7.The Main Theorem on Pseudomonotone Potential Operators
25.8.Application to the Main Theorem on Quadratic Variational Inequalities
25.9.Application to Nonlinear Stationary Conservation Laws
25.10.Projection Iteration Method for Conservation Laws
25.11.The Main Theorem on Nonlinear Stationary Conservation Laws
25.12.Duality Theory for Conservation Laws and Two-sided a posterior.i Error Estimates for the Ritz Method
25.13.The Kacanov Method for Stationary Conservation Laws
25.14.The Abstract Kacanov Method for Variational Inequalities
CHAPTER 26 Monotone Operators and Quasi-Linear Elliptic Differential Equations
26.1.Hemicontinuity and Demicontinuity
26.2.The Main Theorem on Monotone Operators
26.3.The Nemyckii Operator
26.4.Generalized Gradient Method for the Solution of the Galerkin Equations
26.5.Application to Quasi-Linear Elliptic Differential Equations of Order 2m
26.6.Proper Monotone Operators and Proper Quasi-Linear Elliptic Differential Operators
CHAPTER 27 Pseudomonotone Operators and Quasi-Linear Elliptic Differential Equations
27.1.The Conditions (M) and (S), and the Convergence of the Galerkin Method
27.2.Pseudomonotone Operators
27.3.The Main Theorem on Pseudomonotone Operators
27.4.Application to Quasi-Linear Elliptic Differential Equations
27.5.Relations Between Important Properties of Nonlinear Operators
27.6.Dual Pairs of B-Spaces
27.7.The Main Theorem on Locally Coercive Operators
27.8.Application to Strongly Nonlinear Differential Equations
CHAPTER 28 Monotone Operators and Hammerstein Integral Equations
28.1.A Factorization Theorem for Angle-Bounded Operators
28.2.Abstract Hammerstein Equations with Angle-Bounded Kernel Operators
28.3.Abstract Hammerstein Equations with Compact Kernel Operators
28.4.Application to Hammerstein Integral Equations
28.5.Application to Semilinear Elliptic Differential Equations
CHAPTER 29 Noncoercive Equations, Nonlinear Fredholm Alternatives,Locally Monotone Operators, Stability, and Bifurcation
29.1.Pseudoresolvent, Equivalent Coincidence Problems, and the Coincidence Degree
29.2.Fredholm Alternatives for Asymptotically Linear, Compact Perturbations of the Identity
29.3.Application to Nonlinear Systems of Real Equations
29.4.Application to Integral Equations
29.5.Application to Differential Equations
29.6.The Generalized Antipodal Theorem
29.7.Fredholm Alternatives for Asymptotically Linear (S)-Operators
29.8.Weak Asymptotes and Fredholm Alternatives
……
GENERALIZATION TO NONLINEAR NONSTATIONARY PROBLEMS
GENERAL THEORY OF DISCRETIZATION METHODS
Appendix
References
List of Symbols
List of Theorems
List of the Most Important Definitions
List of Schematic Overviews
List of Important Principles
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號