注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計算機(jī)/網(wǎng)絡(luò)圖形圖像、多媒體、網(wǎng)頁制作其他處理軟件模式識別(英文版.第4版)

模式識別(英文版.第4版)

模式識別(英文版.第4版)

定 價:¥89.00

作 者: (希)西奧多里德斯 等著
出版社: 機(jī)械工業(yè)出版社
叢編項: 經(jīng)典原版書庫
標(biāo) 簽: 多媒體

ISBN: 9787111268963 出版時間: 2009-08-01 包裝: 平裝
開本: 16開 頁數(shù): 961 字?jǐn)?shù):  

內(nèi)容簡介

  《模式識別(英文版)(第4版)》是享譽(yù)世界的名著,內(nèi)容既全面又相對獨(dú)立,既有基礎(chǔ)知識的介紹,又有本領(lǐng)域研究現(xiàn)狀的介紹,還有對未來發(fā)展的展望,是本領(lǐng)域最全面的參考書,被世界眾多高校選用為教材?!赌J阶R別(英文版)(第4版)》可作為高等院校計算機(jī)。電子、通信。自動化等專業(yè)研究生和高年級本科生的教材,也可作為計算機(jī)信息處理、自動控制等相關(guān)領(lǐng)域的工程技術(shù)人員的參考用書?!赌J阶R別(英文版)(第4版)》主要特點(diǎn)提供了大型數(shù)據(jù)集和高維數(shù)據(jù)的聚類算法以及網(wǎng)絡(luò)挖掘和生物信息學(xué)應(yīng)用的最新資料。涵蓋了基于圖像分析、光學(xué)字符識別,信道均衡,語音識別和音頻分類的多種應(yīng)用。呈現(xiàn)了解決分類和穩(wěn)健回歸問題的內(nèi)核方法取得的最新成果。介紹了帶有Boosting方法的分類器組合技術(shù)。提供更多處理過的實(shí)例和圖例,加深讀者對各種方法的了解。增加了關(guān)于熱點(diǎn)話題的新的章節(jié),包括非線性維數(shù)約減、非負(fù)矩陣分解、實(shí)用性反饋。穩(wěn)健回歸、半監(jiān)督學(xué)習(xí),譜聚類和聚類組合技術(shù)。

作者簡介

  西奧多里德斯,希臘雅典大學(xué)信息系教授。主要研究方向是自適應(yīng)信號處理、通信與模式識別。他是歐洲并行結(jié)構(gòu)及語言協(xié)會(PARLE-95)的主席和歐洲信號處理協(xié)會(EUSIPCO-98)的常務(wù)主席、《信號處理》雜志編委。

圖書目錄

Preface
CHAPTER1 Introduction
1.1 Is Pattern Recognition Important?
1.2 Features, Feature Vectors, and Classifiers
1.3 Supervised, Unsupervised, and Semi-Supervised Learning
1.4 MATLAB Programs
1.5 Outline of The Book
CHAPTER2 Classifiers Based on Bayes Decision Theory
2.1 Introduction
2.2 Bayes Decision Theory
2.3 Discriminant Functions and Decision Surfaces
2.4 Bayesian Classification for Normal Distributions
2.5 Estimation of Unknown Probability Density Functions
2.6 The Nearest Neighbor Rule
2.7 Bayesian Networks
2.8 Problems
References
CHAPTER3 Linear Classifiers
3.1 Introduction
3.2 Linear Discriminant Functions and Decision Hyperplanes
3.3 The Perceptron Algorithm
3.4 Least Squares Methods
3.5 Mean Square Estimation Revisited
3.6 Logistic Discrimination
3.7 Support Vector Machines
3.8 Problems
References
CHAPTER 4 Nonlinear Classifiers
4.1 Introduction
4.2 The XOR Problem
4.3 TheTwo-Layer Perceptron
4.4 Three-Layer Perceptrons
4.5 Algorithms Based on Exact Classification of the Training Set
4.6 The Backpropagation Algorithm
4.7 Variations on the Backpropagation Theme
4.8 The Cost Function Choice
4.9 Choice of the Network Size
4.10 A Simulation Example
4.11 Networks with Weight Sharing
4.12 Generalized Linear Classifiers
4.13 Capacity of the/-Dimensional Space inLinear Dichotomies
4.14 Polynomial Classifiers
4.15 Radial Basis Function Networks
4.16 UniversalApproximators
4.17 Probabilistic Neural Networks
4.18 Support Vector Machines: The Nonlinear Case
4.19 Beyond the SVM Paradigm
4.20 Decision Trees
4.21 Combining Classifiers
4.22 The Boosting Approach to Combine Classifiers
4.23 The Class Imbalance Problem
4.24 Discussion
4.25 Problems
References
CHAPTER5 Feature Selection
5.1 Introduction
5.2 Preprocessing
5.3 The Peaking Phenomenon
5.4 Feature Selection Based on Statistical Hypothesis Testing
5.5 The Receiver Operating Characteristics (ROC) Curve
5.6 Class Separability Measures
5.7 Feature Subset Selection
5.8 Optimal Feature Generation
5.9 Neural Networks and Feature Generation/Selection
5.10 A Hint On Generalization Theory
5.11 The Bayesian Information Criterion
5.12 Problems
References
CHAPTER 6 FEATURE GENERATION Ⅰ:LINEAR TRANSFORMS
CHAPTER 7 FEATURE GENERATION Ⅱ
CHAPTER 8 TEMPLATE MATCHING
CHAPTER 9 CONTEXT-DEPENDENT CLASIFICATION
CHAPTER10 SYSTEM EVALUATION
CHAPTER11 CLUSTERING:BASIC CONCEPTS
CHAPTER12 CLUSTERING ALGORITHMSⅠ:SEQUENTIAL ALGORITHMS
CHAPTER13 CLUSTERING ALGORITHMSⅡ:HIERARCHICAL ALGORITHMS
CHAPTER14 CLUSTERING ALGORITHMSⅢ:SCHEMES BASED ON FUNCTION OPTIMIZATION
CHAPTER15 CLUSTERING ALGORITHMSⅣ
CHAPTER16 CLUSTER VALIDITY
Appendix A Hints form Probability and Statistics
Appendix B Linear Algebra Basics

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號