Introduction to Mathematical Logic and Resolution Principle(數(shù)理邏輯引論與歸結(jié)原理)在第一版的基礎(chǔ)上進(jìn)行修訂再版,全書共9章,內(nèi)容可分為Boole代數(shù)理論,命題演算與謂詞演算理論,歸結(jié)原理理論,多值邏輯的最新理論等4部分。同時(shí),在第一版的基礎(chǔ)上對(duì)“計(jì)量邏輯學(xué)”,關(guān)于一階系統(tǒng)K完備性的證明等諸多內(nèi)容做了補(bǔ)充或改寫?!禝ntroduction to Mathematical…(數(shù)理邏輯引論與歸結(jié)原理)》可供計(jì)算機(jī)專業(yè)、應(yīng)用數(shù)學(xué)專業(yè)、人工智能專業(yè)的研究生與高年級(jí)本科生及教師閱讀。
作者簡(jiǎn)介
暫缺《數(shù)理邏輯引論與歸結(jié)原理(英文版)》作者簡(jiǎn)介
圖書目錄
Preface Chapter 1 Preliminaries 1.1 Partially ordered sets 1.2 Lattices 1.3 Boolean algebras Chapter 2 Propositional Calculus 2.1 Propositions and their symbolization 2.2 Semantics of propositional calculus 2.3 Syntax of propositional calculus Chapter 3 Semantics of First Order Predicate Calculus 3.1 First order languages 3.2 Interpretations and logically valid formulas 3.3 Logical equivalences Chapter 4 Syntax of First Order Predicate Calculus 4.1 The formal system KL 4.2 Provable equivalence relations 4.3 Prenex normal forms 4.4 Completeness of the first order system KL *4.5 Quantifier-free formulas Chapter 5 Skolem's Standard Forms and Herbrand's Theorems 5.1 Introduction 5.2 Skolem standard forms 5.3 Clauses *5.4 Regular function systems and regular universes 5.5 Herbrand universes and Herbrand's theorems 5.6 The Davis-Putnam method Chapter 6 Resolution Principle 6.1 Resolution in propositional calculus 6.2 Substitutions and unifications 6.3 Resolution Principle in predicate calculus 6.4 Completeness theorem of Resolution Principle 6.5 A simple method for searching clause sets S Chapter 7 Refinements of Resolution 7.1 Introduction 7.2 Semantic resolution 7.3 Lock resolution 7.4 Linear resolution Chapter 8 Many-Valued Logic Calculi 8.1 Introduction 8.2 Regular implication operators 8.3 MV-algebras 8.4 Lukasiewicz propositional calculus 8.5 R0-algebras 8.6 The propositional deductive system L* Chapter 9 Quantitative Logic 9.1 Quantitative logic theory in two-valued propositional logic system L 9.2 Quantitative logic theory in L ukasiewicz many-valued propositional logic systems Ln and Luk 9.3 Quantitative logic theory in many-valued R0-propositional logic systems L*n and L* 9.4 Structural characterizations of maximally consistent theories 9.5 Remarks on Godel and Product logic systems Bibliography Indent