注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計算機(jī)/網(wǎng)絡(luò)計算機(jī)科學(xué)理論與基礎(chǔ)知識計算理論基礎(chǔ):可計算性、復(fù)雜性和語言(英文版·第2版)

計算理論基礎(chǔ):可計算性、復(fù)雜性和語言(英文版·第2版)

計算理論基礎(chǔ):可計算性、復(fù)雜性和語言(英文版·第2版)

定 價:¥79.00

作 者: (美)戴維斯(Davis,M.D.),(美)西加爾(Sigal,R.),(美)韋約克(Weyuker,E.J.) 著
出版社: 人民郵電出版社
叢編項(xiàng): 圖靈原版計算機(jī)科學(xué)系列
標(biāo) 簽: 計算機(jī)理論

ISBN: 9787115196576 出版時間: 2009-05-01 包裝: 平裝
開本: 16開 頁數(shù): 609 字?jǐn)?shù):  

內(nèi)容簡介

  《計算理論基礎(chǔ)可計算性復(fù)雜性和語言(英文版·第2版)》是理論計算機(jī)科學(xué)領(lǐng)域的名作,是計算機(jī)科學(xué)核心主題的導(dǎo)論性教材。全書分為可計算性、文法與自動機(jī)、邏輯學(xué)、復(fù)雜性及語義學(xué)5個部分,分別講述了可計算性理論、形式語言、邏輯學(xué)與自動演繹、可計算復(fù)雜性(包括NP完全問題)和編程語言的語義等主題,并展示了它們之間如何相互關(guān)聯(lián)?!队嬎憷碚摶A(chǔ)可計算性復(fù)雜性和語言(英文版·第2版)》是計算機(jī)及相關(guān)專業(yè)高年級本科生和研究生的理想教學(xué)參考書,對于計算機(jī)領(lǐng)域的專業(yè)人士也是很好的技術(shù)參考書。

作者簡介

  Martin D.Davis,著名計算機(jī)科學(xué)家和數(shù)學(xué)家。1950年在普林斯頓大學(xué)獲得博士學(xué)位,與圖靈同門(導(dǎo)師均為計算科學(xué)大師Alonzo Church)。后長期任教于紐約大學(xué)柯朗數(shù)學(xué)研究所。他是自動演繹理論先驅(qū),還是DPLL算法的發(fā)明人之一,Post-Turing機(jī)更使其聲名遠(yuǎn)播。除本書外,他還著有經(jīng)典名著Computability and Unsolvability。Ron Sigal,資深軟件工程師。1983年在紐約大學(xué)獲得計算機(jī)科學(xué)博士學(xué)位。曾先后任教于紐約城市大學(xué)、意大利卡塔尼亞大學(xué)、耶魯大學(xué)、Hofstra大學(xué)。他參與的軟件項(xiàng)目有NASA的火星探路者、JBoss等。Elaine J.Weyuker,著名女計算機(jī)科學(xué)家。美國國家工程院院士、IEEE和ACM會士、AT&T院士、ACM婦女委員會主席、ACM執(zhí)行委員,現(xiàn)任AT&T實(shí)驗(yàn)室研究員。她的主要研究領(lǐng)域是軟件測試與可靠性。此前曾任紐約大學(xué)柯朗數(shù)學(xué)研究所計算機(jī)科學(xué)教授近20年。

圖書目錄

Contents
I Preliminaries 1
1. Sets and n-tuples 1
2. Functions 3
3. Alphabets and Strings 4
4. Predicates 5
5. Quantifiers 6
6. Proof by Contradiction 8
7. Mathematical Induction 9
Part 1 Computability 15
2 Programs and Computable Functions 17
1. A Programming Language 17
2. Some Examples of Programs 18
3. Syntax 25
4. Computable Functions 28
5. More about Macros 32
3 Primitive Recursive Functions 39
1. Composition 39
2. Recursion 40
3. PRC Classes 42
4. Some Primitive Recursive Functions 44
5. Primitive Recursive Predicates 49
6. Iterated Operations and Bounded Quantifiers 52
7. Minimalization 55
8. Pairing Functions and G6del Numbers 59
4 A Universal Program 65
1. Coding Programs by Numbers 65
2. The Halting Problem 68
3. Universality 70
4. Recursively Enumerable Sets 78
5. The Parameter Theorem 85
6. Diagonalization and Reducibility 88
7. Rice s Theorem 95
*8. The Recursion Theorem 97
*9. A Computable Function That Is Not Primitive Recursive 105
5 Calculations on Strings 113
1. Numerical Representation of Strings 113
2. A Programming Language for String Computations 121
3. The Languages and n 126
4. Post-Turing Programs 129
5. Simulation of n in 135
6. Simulation of in 140
6 Turing Machines 145
1. Internal States 145
2. A Universal Turing Machine 152
3. The Languages Accepted by Turing Machines 153
4. The Halting Problem for Turing Machines 157
5. Nondeterministic Turing Machines 159
6. Variations on the Turing Machine Theme 162
7 Processes and Grammars 169
1. Semi-Thue Processes 169
2. Simulation of Nondeterministic Turing Machines by Semi-Thue Processes 171
3. Unsolvable Word Problems 176
4. Posts Correspondence Problem 181
5. Grammars 186
6. Some Unsolvable Problems Concerning Grammars 191
7. Normal Processes 192
8 Classifying Unsolvable Problems 197
1. Using Oracles 197
2. Relativization of Universality 201
3. Reducibility 207
4. Sets r.e. Relative to an Oracle 211
5. The Arithmetic Hierarchy 215
6. Posts Theorem 217
7. Classifying Some Unsolvable Problems 224
8. Rices Theorem Revisited 230
9. Recursive Permutations 231
Part 2 Grammars and Automata 235
9 Regular Languages 237
1. Finite Automata 237
2. Nondeterministic Finite Automata 242
3. Additional Examples 247
4. Closure Properties 249
5. Kleenes Theorem 253
6. The Pumping Lemma and Its Applications 260
7. The Myhill-Nerode Theorem 263
10 Context-Free Languages 269
1. Context-Free Grammars and Their Derivation Trees 269
2. Regular Grammars 280
3. Chomsky Normal Form 285
4. Bar-Hillels Pumping Lemma 287
5. Closure Properties 291
*6. Solvable and Unsolvable Problems 297
7. Bracket Languages 301
8. Pushdown Automata 308
9. Compilers and Formal Languages 323
11 Context-Sensitive Languages 327
1. The Chomsky Hierarchy 327
2. Linear Bounded Automata 330
3. Closure Properties 337
Part 3 Logic 345
12 Propositional Calculus 347
1. Formulas and Assignments 347
2. Tautological Inference 352
3. Normal Forms 353
4. The Davis-Putnam Rules 360
5. Minimal Unsatisfiability and Subsumption 366
6. Resolution 367
7. The Compactness Theorem 370
13 Quantification Theory 375
1. The Language of Predicate Logic 375
2. Semantics 377
3. Logical Consequence 382
4. Herbrands Theorem 388
5. Unification 399
6. Compactness and Countability 404
*7. G6dels Incompleteness Theorem 407
*8. Unsolvability of the Satisfiability Problem in Predicate Logic 410
Part 4 Complexity 417
14 Abstract Complexity 419
1. The Blum Axioms 419
2. The Gap Theorem 425
3. Preliminary Form of the Speedup Theorem 428
4. The Speedup Theorem Concluded 435
15 Polynomial-Time Computability 439
1. Rates of Growth 439
2. P versus NP 443
3. Cooks Theorem 451
4. Other NP-Complete Problems 457
Part 5 Semantics 465
16 Approximation Orderings 467
1. Programming Language Semantics 467
2. Partial Orders 472
3. Complete Partial Orders 475
4. Continuous Functions 486
5. Fixed Points 494
17 Denotational Semantics of Recursion Equations 505
1. Syntax 505
2. Semantics of Terms 511
3. Solutions to W-Programs 520
4. Denotational Semantics of W-Programs 530
5. Simple Data Structure Systems 539
6. Infinitary Data Structure Systems 544
18 Operational Semantics of Recursion Equations 557
1. Operational Semantics for Simple Data Structure Systems 557
2. Computable Functions 575
3. Operational Semantics for lnfinitary Data Structure Systems 584
Suggestions for Further Reading 593
Notation Index 595
Index 599

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號