注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)計(jì)算機(jī)/網(wǎng)絡(luò)人工智能人工智能復(fù)雜問(wèn)題求解的結(jié)構(gòu)和策略英文版第6版

人工智能復(fù)雜問(wèn)題求解的結(jié)構(gòu)和策略英文版第6版

人工智能復(fù)雜問(wèn)題求解的結(jié)構(gòu)和策略英文版第6版

定 價(jià):¥46.00

作 者: (美)盧格爾 著
出版社: 機(jī)械工業(yè)出版社
叢編項(xiàng): 經(jīng)典原版書庫(kù)
標(biāo) 簽: 人工智能

ISBN: 9787111256564 出版時(shí)間: 2009-03-01 包裝: 平裝
開本: 32開 頁(yè)數(shù): 754 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書是一本經(jīng)典的人工智能教材,全面闡述了人工智能的基礎(chǔ)理論,有效結(jié)合了求解智能問(wèn)題的數(shù)據(jù)結(jié)構(gòu)以及實(shí)現(xiàn)的算法,把人工智能的應(yīng)用程序應(yīng)用于實(shí)際環(huán)境中,并從社會(huì)和哲學(xué)、心理學(xué)以及神經(jīng)生理學(xué)角度對(duì)人工智能進(jìn)行了獨(dú)特的討論。

作者簡(jiǎn)介

  George F.Luger 1973年在賓夕法尼亞大學(xué)獲得博士學(xué)位,并在之后的5年間在愛丁堡大學(xué)人工智能系進(jìn)行博士后研究,現(xiàn)在是新墨西哥大學(xué)計(jì)算機(jī)科學(xué)研究、語(yǔ)言學(xué)及心理學(xué)教授。

圖書目錄

Preface
Publisher's Acknowledgements
PART I ARTIFIClAL INTELLIGENCE:ITS ROOTS AND SCOPE
1 A1:HISTORY AND APPLICATIONS
1.1 From Eden to ENIAC:Attitudes toward Intelligence,Knowledge,andHuman Artifice
1.2 0verview ofAl Application Areas
1.3 Artificial Intelligence A Summary
1.4 Epilogue and References
1.5 Exercises
PART II ARTIFlClAL INTELLIGENCE AS REPRESENTATION AN D SEARCH
2 THE PREDICATE CALCULUS
2.0 Intr0血ction
2.1 The Propositional Calculus
2.2 The Predicate Calculus
2.3 Using Inference Rules to Produce Predicate Calculus Expressions
2.4 Application:A Logic—Based Financial Advisor
2.5 Epilogue and References
2.6 Exercises
3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH
3.0 Introducfion
3.1 GraphTheory
3.2 Strategies for State Space Search
3.3 using the state Space to Represent Reasoning with the Predicate Calculus
3.4 Epilogue and References
3.5 Exercises
4 HEURISTIC SEARCH
4.0 Introduction
4.l Hill Climbing and Dynamic Programmin9
4.2 The Best-First Search Algorithm
4.3 Admissibility,Monotonicity,and Informedness
4.4 Using Heuristics in Games
4.5 Complexity Issues
4.6 Epilogue and References
4.7 Exercises
5 STOCHASTIC METHODS
5.0 Introduction
5.1 The Elements ofCountin9
5.2 Elements ofProbabilityTheory
5.3 Applications ofthe Stochastic Methodology
5.4 Bayes’Theorem
5.5 Epilogue and References
5.6 Exercises
6 coNTROL AND IMPLEMENTATION OF STATE SPACE SEARCH
6.0 Introduction l93
6.1 Recursion.Based Search
6.2 Production Systems
6.3 The Blackboard Architecture for Problem Solvin9
6.4 Epilogue and References
6.5 Exercises
PARTIII CAPTURING INTELLIGENCE:THE AI CHALLENGE
7 KNOWLEDGE REPRESENTATION
7.0 Issues in Knowledge Representation
7.1 A BriefHistory ofAI Representational Systems
……
8 STRONG METHOD PROBLEM SOLVING
9 REASONING IN UNCERTAIN SITUATIONS
PART Ⅳ MACHINE LEARNING
10 MACHINE LEARNING:SYMBOL-BASED
11 MACHINE LEARNING:CONNECTIONIST
12 MACHINE LEARNING:GENETIC AND EMERGENT
13 MACHINE LEARNING:PROBABILISTIC
PART Ⅴ ADVANCED TOPICS FOR AI PROBLEM SOLVING
14 AUTOMATED REASONING
15 UNDERSTANDING NATURAL LANGUAGE
PART Ⅵ EPILOGUE
16 ARTIFICIAL INTELLIGENCE AS EMPIRICAL ENQUIRY

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)