注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)動(dòng)力系統(tǒng)Ⅹ:旋渦的一般理論(續(xù)一 影印版)

動(dòng)力系統(tǒng)Ⅹ:旋渦的一般理論(續(xù)一 影印版)

動(dòng)力系統(tǒng)Ⅹ:旋渦的一般理論(續(xù)一 影印版)

定 價(jià):¥50.00

作 者: (俄羅斯)科茲洛夫 著
出版社: 科學(xué)出版社
叢編項(xiàng): 國外數(shù)學(xué)名著系列
標(biāo) 簽: 數(shù)學(xué)理論

ISBN: 9787030234971 出版時(shí)間: 2009-01-01 包裝: 精裝
開本: 16開 頁數(shù): 184 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《國外數(shù)學(xué)名著系列(續(xù)1)(影印版)54:動(dòng)力系統(tǒng)10(旋渦的一般理論》contains a mathematical exposition of analogies between classical (Hamiltonian) mechanics, geometrical optics, and hydrodynamics. This theory highlights several general mathematical ideas that appeared in Hamiltonian mechanics, optics and hydrodynamics under different names. In addition, some interesting applications of the general theory of vortices are discussed in the book such as applications in numerical methods, stability theory, and the theory of exact integration of equations of dynamics. The investigation of families of trajectories of Hamiltonian systems can be reduced to problems of multidimensional ideal fluid dynamics.For example, the well-known Hamilton-Jacobi method corresponds to the case of potential flows. The book will be of great interest to researchers and postgraduate students interested in mathematical physics, mechanics, and the theory of differential equations.

作者簡(jiǎn)介

暫缺《動(dòng)力系統(tǒng)Ⅹ:旋渦的一般理論(續(xù)一 影印版)》作者簡(jiǎn)介

圖書目錄

Introduction
Descartes, Leibnitz, and Newton
Newton and Bernoulli
Voltaire, Maupertuis, and Clairaut
Helmholtz and Thomson
About the Book
Chapter 1.Hydrodynamics, Geometric Optics, and Classical Mechanics
 1.Vortex Motions of a Continuous Medium
 2.Point Vortices on the Plane
 3.Systems of Rays, Laws of Reflection and Refraction, and the Malus Theorem
 4.Fermat Principle, Canonical Hamilton Equations, and the Optical-Mechanical Analogy
 5.Hamiltonian Form of the Equations of Motion
 6.Action in the Phase Space and the Poincare-Cartan Invariant
 7.Hamilton-Jacobi Method and Huygens Principle
 8.Hydrodynamics of Hamiltonian Systems
 9.Lamb Equations and the Stability Problem
Chapter 2.General Vortex Theory
 1.Lamb Equations and Hamilton Equations
 2.Reduction to the Autonomous Case
 3.Invariant Volume Forms
 4.Vortex Manifolds
 5.Euler Equation
 6.Vortices in Dissipative Systems
Chapter 3.Geodesics on Lie Groups with a Left-Invariant Metric
 1.Euter-Poincare Equations
 2.Vortex Theory of the Top
 3.Haar Measure
 4.Poisson Brackets
 5.Casimir Functions and Vortex Manifolds
Chapter 4.Vortex Method for Integrating Hamilton Equations
 1.Hamilton-Jacobi Method and the Liouville Theorem on Complete Integrability
 2.Noncommutative Integration of the Hamilton Equations
 3.Vortex Integration Method
 4.Complete Integrability of the Quotient System
 5.Systems with Three Degrees of Freedom
Supplement 1: Vorticity Invariants and Secondary Hydrodynamics
Supplement 2: Quantum Mechanics and Hydrodynamics
Supplement 3: Vortex Theory of Adiabatic Equilibrium Processes
References
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)