注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)線性估計(jì)(影印版)

線性估計(jì)(影印版)

線性估計(jì)(影印版)

定 價(jià):¥98.00

作 者: (美)凱拉斯(Kailath,T.),(美)賽義德(Sayed,A.H.),(美)哈斯比(Hassibi,B.) 著
出版社: 西安交通大學(xué)出版社
叢編項(xiàng): 國(guó)外名校最新教材精選
標(biāo) 簽: 運(yùn)籌學(xué)

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787560529493 出版時(shí)間: 2008-12-01 包裝: 平裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 854 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書(shū)主要介紹狀態(tài)空間模型的有限維線性系統(tǒng)的估計(jì)問(wèn)題,涵蓋了目前我們熟知的維納濾波和卡爾曼濾波這一領(lǐng)域的許多方面。本書(shū)的三個(gè)獨(dú)特之處是:’第一。將幾何學(xué)的觀點(diǎn)滲透于分析中;第二。側(cè)重于將許多算法用平方根/陣列的形式給出;第三。強(qiáng)調(diào)了在解決自適應(yīng)濾波、估計(jì)和控制這些相關(guān)問(wèn)題時(shí)的等價(jià)性和對(duì)偶性概念。全書(shū)由17章正文和7章附錄構(gòu)成。按內(nèi)容可分為以下幾個(gè)專(zhuān)題:★概論和基礎(chǔ)知識(shí)(1—5章)★平穩(wěn)過(guò)程估計(jì)(6書(shū)章)★非平穩(wěn)過(guò)程估計(jì)(9—10章)★快速陣列算法(11—1 3章)★連續(xù)時(shí)間估計(jì)(16章)★高級(jí)專(zhuān)題(14,15,17章)本書(shū)適合于控制、通信.?dāng)?shù)字信號(hào)處理、地球物理、計(jì)量經(jīng)濟(jì)學(xué)、統(tǒng)計(jì)學(xué)等領(lǐng)域的研究生和科研人員使用。

作者簡(jiǎn)介

  Thomas Kailath博士,美國(guó)斯坦福大學(xué)教授,世界著名的控制與系統(tǒng)科學(xué)專(zhuān)家,美國(guó)科學(xué)院和工程院院士,第三世界科學(xué)院院士和印度工程院院士,IEEE會(huì)士(Fellow)。他的研究興趣涉及信息理論、通信系統(tǒng)、計(jì)算、控制、線性系統(tǒng)、統(tǒng)計(jì)信號(hào)處理、大規(guī)模集成電路等,也是名著《線性系統(tǒng)理論》(LinearSystemTheory,Springer-Verla9,1991)的作者。Thomas Kailath教授在多個(gè)研究領(lǐng)域做出了深遠(yuǎn)的貢獻(xiàn),并在1991年獲得了IEEE信號(hào)處理分會(huì)的最高分會(huì)獎(jiǎng),在2000年獲得了IEEE信息理論分會(huì)的Shannon獎(jiǎng)。同時(shí),Thomas Kailath教授也是一名杰出的教育學(xué)者,他指導(dǎo)的博士生和博士后學(xué)者中許多人已在各自的研究領(lǐng)域做出了杰出的貢獻(xiàn)。Ali H.Sayed博士,現(xiàn)為美國(guó)加州大學(xué)洛杉磯分校(UCLA)電氣工程教授。IEEE會(huì)士。他的研究興趣是自適應(yīng)濾波、統(tǒng)計(jì)信號(hào)處理和估計(jì)算法等。Babak Hassibi博士,現(xiàn)為美國(guó)加州理工學(xué)院電氣工程教授,1998-2000年曾在美國(guó)貝爾實(shí)驗(yàn)室工作。他的研究興趣是通信、信號(hào)處理和控制等。

圖書(shū)目錄

Preface
Symbols
1 OVERVIEW
1.1 The Asymptotic Observer
1.2 The Optimum Transient Observer
1.2.1 The Mean-Square-Error Criterion
1.2.2 Minimization via Completion of Squares
1.2.3 The Optimum Transient Observer
1.2.4 The Kalman Filter
1.3 Coming Attractions
1.3.1 Smoothed Estimators
1.3.2 Extensions to Time-Variant Models
1.3.3 Fast Algorithms for Time-Invariant Systems
1.3.4 Numerical Issues
1.3.5 Array Algorithms
1.3.6 Other Topics
1.4 The Innovations Process
1.4.1 Whiteness of the Innovations Process
1.4.2 Innovations Representations
1.4.3 Canonical Covariance Factorization
1.4.4 Exploiting State-Space Structure for Matrix Problems
1.5 Steady-State Behavior
1.5.1 Appropriate Solutions of the DARE
1.5.2 Wiener Filters
1.5.3 Convergence Results
1.6 Several Related Problems
1.6.1 Adaptive RL$ Fdtering
1.6.2 Linear Quadratic Control
1.6.3 Hoo Estimation
1.6.4 Hoo Adaptive Fdtering
1.6.5 Hoo Control
1.6.6 Linear Algebra and Matrix Theory
1.7 Complements
Problems
2 DETERMINISTIC LEAST-SQUARES PROBLEMS
2.1 The Deterministic Least-Squares Criterion
2.2 The Classical Solutions
2.2.1 The Normal Equations
2.2.2 Weighted Least-Squares Problems
2.2.3 Statistical Assumptions on the Noise
2.3 A Geometric Formulation: The Orthogonality Condition
2.3.1 The Projection Theorem in Inner Product Spaces
2.3.2 Geometric Insights
2.3.3 Projection Matrices
2.3.4 An Application: Order-Reeursive Least-Squares
2.4 Regularized Least-Squares Problems
2.5 An Array Algorithm: The OR Method
2.6 Updating Least-Squares Solutions: RLS Algorithms
2.6.1 The RLS Algorithm
2.6.2 An Array Algorithm for RLS
2.7 Downdating Least-Squares Solutions
2.8 Some Variations of Least-Squares Problems
2.8.1 The Total Least-Squares Criterion
2.8.2 Criteria with Bounds on Data Uncertainties
2.9 Complements
Problems
2.A On Systems of Linear Equations
3 STOCHASTIC LEAST-SQUARES PROBLEMS
3.1 The Problem of Stochastic Estimation
3.2 Linear Least-Mean-Squares Estimators
3.2.1 The Fundamental Equations
3.2.2 Stochastic Interpretation of Triangular Factorization
3.2.3 Singular Data Covariance Matrices
3.2.4 Nonzero-Mean Values and Centering
3.2.5 Estimators for Complex-Valued Random Variables
3.3 A Geometric Formulation
3.3.1 The Orthogonality Condition
3.3.2 Examples
3.4 Linear Models
3.4.1 Information Forms When Rx > 0 and Rv > 0
3.4.2 The Gauss-Markov Theorem
3.4.3 Combining Estimators
3.5 Equivalence to Deterministic Least-Squares
3.6 Complements
Problems
3.7 Least-Mean-Squares Estimation
3.8 Gaussian Random Variables
3.9 Optimal Estimation for Gaussian Variables
4 THE INNOVATIONS PROCESS
4.1 Estimation of Stochastic Processes
4.1.1 The Fixed Interval Smoothing Problem
4.1.2 The Causal Fdtering Problem
4.1.3 The Wiener-HopfTechnique
4.1.4 A Note on Terminology—— Vectors and Gramians
4.2 The Innovations Process
4.2.1 A Geometric Approach
4.2.2 An Algebraic Approach
4.2.3 The Modified Gram-Schmidt Procedure
4.2.4 Estimation Given the Innovations Process
4.2.5 The Filtering Problem via the Innovations Approach
4.2.6 Computational Issues
4.3 Innovations Approach to Deterministic Least-Squares Problems
4.4 The Exponentially Correlated Process
4.4.1 Triangular Factorization of Ry
4.4.2 Finding L-1 and the Innovations
4.4.3 Innovations via the Gram-Schmidt Procedures
4.5 Complements
Problems
4.6 Linear Spaces, Modules, and Gramians
5 STATE-SPACE MODELS
5.1 The Exponentially Correlated Process
5.1.1 Finite Interval Problems; Initial Conditions for Stationarity
5.1.2 Innovations from the Process Model
5.2 Going Beyond the Stationary Case
5.2.1 Stationary Processes
5.2.2 Nonstationary Processes
5.3 Higher-Order Processes and State-Space Models
5.3.1 Autoregressive Processes
5.3.2 Handling Initial Conditions
5.3.3 State-SpaceDescriptions
5.3.4 The Standard State-Space Model
5.3.5 Examples of Other State-Space Models
5.4 Wide-Seuse Markov Processes
5.4.1 Forwards Markovian Models
5.4.2 Backwards Markovian Models
5.4.3 Backwards Models from Forwards Models
5.4.4 Markovian Representations and the Standard Model
5.5 Complements
Problems
5.6 Some Global Formulas
6 INNOVATIONS FOR STATIONARY PROCESSES
6.1 Innovations via Spectral Factorization
6.1.1 Stationary Processes
6.1.2 Generating Functions and z-Spectra
6.2 Signals and Systems
6.2.1 The z-Transform
6.2.2 Linear Time-Invariant Systems
6.2.3 Causal, Anticausal, and Minimum-Phase Systems
6.3 Stationary Random Processes
6.3.1 Properties of the z-Spectrum
6.3.2 Linear Operations on Stationary Stochastic Processes
6.4 Canonical Spectral Factorization
6.5 Scalar Rational z-Spectra
6.6 Vector-Valued Stationary Processes
6.7 Complements
Problems
6.8 Continuous-Time Systems and Processes
7 WIENER THEORY FOR SCALAR PROCESSES
7.1 Continuous-Time Wiener Smoothing
7.1.1 The GeometricFormulation
7.1.2 Solution via Fourier Transforms
7.1.3 The Minimum Mean-Square Error
7.1.4 Filtering Signals out of Noisy Measurements
7.1.5 Comparison with the Ideal Filter
7.2 The Continuous-Time Wiener-Hopf Equation
7.3 Discrete-Trine Problems
7.3.1 The Discrete-Trine Wiener Smoother
7.3.2 The Discrete-Trine Wiener-Hopf Equation
7.4 The Discrete-Trine Wiener-Hopf Technique
7.5 Causal Parts Via Partial Fractions
7.6 Important Special Cases and Examples
7.6.1 Pure Prediction
7.6.2 Additive White Noise
……
8 RECURSIVE WIENER FILTERING
9 THE KALMAN FILTER
10 SMOOTHED ESTIMATORS
11 FAST ALGORITHMS
12 ARRAY ALGORITHMS
13 FAST ARRAY ALGORITHMS
14 ASYMPTOTIC BEHAVIOR
15 DUALITY AND EQUIVALENCE IN ESTIMATION AND CONTROL
16 CONTINUOUS-TIME STATE-SPACE ESTIMATION
17 A SCATTERING THEORY APPROACH
A USEFUL MATRIX RESULTS
B UNITARY AND J-UNITARY TRANSFORMATIONS
C SOME SYSTEM THEORY CONCEPTS
D LYAPUNOV EQUATIONS
E ALGEBRAIC RICCATI EQUATIONS
F DISPLACEMENT STRUCTURE

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)