注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)物理學(xué)隨機(jī)矩陣在物理學(xué)中的應(yīng)用(影印版)

隨機(jī)矩陣在物理學(xué)中的應(yīng)用(影印版)

隨機(jī)矩陣在物理學(xué)中的應(yīng)用(影印版)

定 價:¥98.00

作 者: (德)布拉欽
出版社: 科學(xué)出版社
叢編項(xiàng): 國外物理名著系列
標(biāo) 簽: 理論物理學(xué)

ISBN: 9787030226266 出版時間: 2008-08-01 包裝: 精裝
開本: 16開 頁數(shù): 513 字?jǐn)?shù):  

內(nèi)容簡介

  Dyson和Wigner最先成功地將隨機(jī)矩陣應(yīng)用到物理學(xué)中,經(jīng)過六七十年的發(fā)展,現(xiàn)在它在物理學(xué)中的應(yīng)用越來越廣泛,并且已經(jīng)滲透到了現(xiàn)代數(shù)學(xué)、物理學(xué)的很多新興領(lǐng)域,是理論物理學(xué)家的重要數(shù)學(xué)工具。隨機(jī)矩陣?yán)碚撓嚓P(guān)的數(shù)學(xué)方法能夠解決更多的問題,而且方式更加靈活,在物理學(xué)中的應(yīng)用也更加深入,可以用來計(jì)算介觀系統(tǒng)的通用關(guān)系。它在無序系統(tǒng)和量子混沌領(lǐng)域也有一些新的應(yīng)用,并且通過建立新的矩陣模型,在二維引力和弦以及非阿貝爾規(guī)范理論方面取得了重要進(jìn)展。本書由本領(lǐng)域的杰出學(xué)者撰寫,系統(tǒng)闡述了相關(guān)的理論知識。適合對隨機(jī)矩陣處理物理問題感興趣的研究生和科研人員參考。

作者簡介

暫缺《隨機(jī)矩陣在物理學(xué)中的應(yīng)用(影印版)》作者簡介

圖書目錄

Preface
Random Matrices and Number Theory
J.P. Keating
 1 Introduction
 2 ζ(1/2+it)and logζ(1/2+it)
 3 Characteristic polynomials of random unitary matrices
 4 Other compact groups
 5 Families of L-functions and symmetry
 6 Asymptotic expansions
References
2D Quantum Gravity, Matrix Models and Graph Combinatorics
P. Di Francesco
 1 Introduction
 2 Matrix models for 2D quantum gravity
 3 The one-matrix model I: large N limit and the enumeration of planar graphs
 4 The trees behind the graphs
 5 The one-matrix model II:topological expansions and quantum gravity 58
 6 The combinatorics beyond matrix models: geodesic distance in planar graphs
 7 Planar graphs as spatial branching processes
 8 Conclusion
References
Eigenvalue Dynamics, Follytons and Large N Limits of Matrices
Joakim Arnlind, Jens Hoppe
References
Random Matrices and Supersymmetry in Disordered Systems
K.B. Efetov
 1 Supersymmetry method
 2 Wave functions fluctuations in a finite volume. Multifractality
 3 Recent and possible future developments
 4 Summary
Acknowledgements
References
Hydrodynamics of Correlated Systems
Alexander G.Abanoy
 1 Introduction
 2 Instanton or rare fluctuation method
 3 Hydrodynam ic approach
 4 Linearized hydrodynamics or bosoflization
 5 EFP through an asymptotics of the solution
 6 Free fermions
 7 Calogero-Sutherland model
 8 Free fermions on the lattice
 9 Conclusion
Acknowledgements
Appendix:Hydrodynamic approach to non-Galilean invariant systems
Appendix:Exact results for EFP in some integrable models
References
QCD,Chiral Random Matrix Theory and Integrability
J.JM.Verbaarschot
 1 Summarv
 2 IntrodUCtion
 3 OCD
 4 The Dirac spectrum in QCD
 5 Low eflergy limit of QCD
 6 Chiral RMT and the QCD Dirac spectrum
 7 Integrability and the QCD partition function
 8 QCD at fin ite baryon density
 9 Full QCD at nonzero chemical potential
 10 Conclusions
Acknowledgements
References
EUClidean Random Matrices:SOlved and Open Problems
Giorgio Parisi
 1 Introduction
 2 Basic definitions
 3 Physical motivations
 4 Field theory
 5 The simplest case
 6 Phonons
References
Matrix Models and Growth Processes3
A.Zabrodin
 1 Introduction
 2 Some ensembles of random matrices with cornplex eigenvalues
 3 Exact results at finite N
 4 Large N limit
 5 The matrix model as a growth problem
References
Matrix Models and Topological Strings
Marcos Marino
 1 Introduction
 2 Matrix models
 3 Type B topological strings and matrix models
 4 Type A topological strings, Chern-Simons theory and matrix models 366
References
Matrix Models of Moduli Space
Sunil Mukhi
 1 Introduction
 2 Moduli space of Riemann surfaces and its topology
 3 Quadratic differentials and fatgraphs
 4 The Penner model
 5 Penner model and matrix gamma function
 6 The Kontsevich Model
 7 Applications to string theory
 8 Conclusions
References
Matrix Models and 2D String Theory
Emil J. Martinec
 1 Introduction
 2 An overview of string theory
 3 Strings in D-dimensional spacetime
 4 Discretized surfaces and 2D string theory
 5 An overview of observables
 6 Sample calculation: the disk one-point function
 7 Worldsheet description of matrix eigenvalues
 8 Further results
 9 Open problems
References
Matrix Models as Conformal Field Theories
Ivan K. Kostov
 1 Introduction and historical notes
 2 Hermitian matrix integral: saddle points and hyperelliptic curves
 3 The hermitian matrix model as a chiral CFT
 4 Quasiclassical expansion: CFT on a hyperelliptic Riemann surface
 5 Generalization to chains of random matrices
References
Large N Asymptotics of Orthogonal Polynomials from Integrability to Algebraic Geometry
B. Eynard
 1 Introduction
 2 Definitions
 3 Orthogonal polynomials
 4 Differential equations and integrability
 5 Riemann-Hilbert problems and isomonodromies
 6 WKB-like asymptotics and spectral curve
 7 Orthogonal polynomials as matrix integrals
 8 Computation of derivatives of F(0)
 9 Saddle point method
 10 Solution of the saddlepoint equation
 11 Asymptotics of orthogonal polynomials
 12 Conclusion
References

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號