注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)工業(yè)技術(shù)化學工業(yè)納米結(jié)構(gòu):理論與模擬(影印版)

納米結(jié)構(gòu):理論與模擬(影印版)

納米結(jié)構(gòu):理論與模擬(影印版)

定 價:¥78.00

作 者: (法)狄奈許 等著
出版社: 科學出版社
叢編項: 納米科學技術(shù)大系
標 簽: 一般工業(yè)技術(shù)

ISBN: 9787030220271 出版時間: 2008-01-01 包裝: 精裝
開本: 16開 頁數(shù): 304 字數(shù):  

內(nèi)容簡介

  《納米結(jié)構(gòu):理論與模擬(影印版)》主要介紹了納米結(jié)構(gòu)體系中電子結(jié)構(gòu)、介電性質(zhì)、光學轉(zhuǎn)換、電學輸運的基本物理概念、理論方法、重要實驗結(jié)果及其理論分析與模擬計算,是一本較為系統(tǒng)的、有使用價值的理論專著。納米科學的進展正在越來越依賴計算與模擬。這取決于三個因素的結(jié)合:減小納米物質(zhì)的尺寸、增強計算機的能力、發(fā)展新的理論?!都{米結(jié)構(gòu):理論與模擬(影印版)》對從事納米科技多學科交叉領域的高年級本科生、研究生及相關的科研教學人員具有重要的參考價值。

作者簡介

暫缺《納米結(jié)構(gòu):理論與模擬(影印版)》作者簡介

圖書目錄

1 General Basis for Computations and Theoretical Models
1.1 Ab initio One-Particle Theories for the Ground State
  1.1.1 Non-interacting N Electron System
  1.1.2 The Hartree Approximation
  1.1.3 The Hartree-Fock Approximation
  1.1.4 Correlations and Exchange-Correlation Hole
  1.1.5 Local Density Approaches
1.2 Quasi-particles and Excitons
  1.2.1 One-Particle Eigenvalues
  1.2.2 The Exchange-Correlation Hole and Static Screening
  1.2.3 Dynamically Screened Interactions
  1.2.4 The GW Approximation
  1.2.5 Excitons
  1.2.6 Towards a More Quantitative Theory
  1.2.7 Time-Dependent Density Functional Theory (TDDFT)
1.3 Semi-empirical Methods
  1.3.1 The Empirical Tight Binding Method
  1.3.2 The Empirical Pseudopotential Method
  1.3.3 The k.p Description and Effective Masses
2 Quantum Confined Systems
2.1 Quantum Confinement and Its Consequences
  2.1.1 Idealized Quantum Wells
  2.1.2 Idealized Quantum Wires
  2.1.3 Idealized Cubic Quantum Dots
  2.1.4 Artificial Atoms: Case of Spherical Wells
  2.1.5 Electronic Structure from Bulk to Quantum Dots
2.2 Computational Techniques
  2.2.1 k - p Method and Envelope Function Approximation
  2.2.2 Tight Binding and Empirical Pseudopotential Methods
  2.2.3 Density Functional Theory
2.3 Comparison Between Different Methods
2.4 Energy Gap of Semiconductor Nanocrystals
2.5 Confined States in Semiconductor Nanocrystals
  2.5.1 Electron States in Direct Gap Semiconductors
  2.5.2 Electron States in Indirect Gap Semiconductors
  2.5.3 Hole States
2.6 Confinement in Disordered and Amorphous Systems
3 Dielectric Properties
3.1 Macroscopic Approach: The Classical Electrostatic Theory
  3.1.1 Bases of the Macroscopic Electrostatic Theory of Dielectrics
  3.3.4 From Microscopic to Macroscopic Dielectric Function for the Bulk Crystal
3.4 Concept of Dielectric Constant for Nanostructures
  3.4.1 The Importance of Surface Polarization Charges
  3.4.2 Dielectric Screening in Quantum Wells
  3.4.3 Dielectric Screening in Quantum Dots
  3.4.4 General Arguments on the Dielectric Response in Nanostructures
  3.4.5 Conclusions
3.5 Charging of a Nanostructure
  3.5.1 Case of a Quantum Dot
  3.5.2 Case of a Quantum Well
4 Quasi-particles and Excitons
4.1 Basic Considerations
4.2 Excitons in the Envelope Function Approximation
  4.2.1 Theory of Bulk Excitons
  4.2.2 Excitons in Quantum Wells
  4.2.3 Exciton Binding Energy in Limiting Situations
  4.2.4 The Influence of Dielectric Mismatch
4.3 Excitons in More Refined Semi-empirical Approaches
  4.3.1 General Discussion
  4.3.2 Excitons in Nanocrystals of Direct Gap Semiconductors
  4.3.3 Excitons in Si Nanocrystals
  4.3.4 Screening of the Electron-Hole Interaction and Configuration Interaction
4.4 Quantitative Treatment of Quasi-particles
  4.4.1 General Arguments
  4.4.2 Tight Binding GW Calculations
  4.4.3 Conclusions
4.5 Quantitative Treatment of Excitons
  4.5.1 Numerical Calculations
  4.5.2 Interpretation of the Results
  4.5.3 Comparison with Experiments
4.6 Charging Effects and Multi-excitons
  4.6.1 Charging Effects: Single Particle Tunneling Through Semiconductor Quantum Dots
  4.6.2 Multi-excitons
4.7 Conclusion
5 Optical Properties and Radiative Processes
5.1 General Formulation
   5.1.1 Optical Absorption and Stimulated Emission
   5.1.2 Luminescence
   5.1.3 Nanostructures in Optical Cavities and Photonic Crystals
   5.1.4 Calculation of the Optical
   5.3.1 Interband Transitions
   5.3.2 Intraband Transitions
   5.3.3 The Importance of Electron-Phonon Coupling
5.4 Optical Properties of Si and Ge Nanocrystals
   5.4.1 Interband Transitions
   5.4.2 Intraband Transitions
6 Defects and Impurities
6.1 Hydrogenic Donors
   6.1.1 Envelope Function Approximation
   6.1.2 Tight Binding Self-Consistent Treatment
6.2 Deep Level Defects in Nanostructures
6.3 Surface Defects: Si Dangling Bonds
   6.3.1 Review of the Properties of Si Dangling Bonds
   6.3.2 Si Dangling Bonds at the Surface of Crystallites
   6.3.3 Dangling Bond Defects in III-V and II-VI Semiconductor Nanocrystals
6.4 Surface Defects: Self-Trapped Excitons
6.5 Oxygen Related Defects at Si-SiO2 Interfaces
7 Non-radiative and Relaxation Processes
7.1 Multi-phonon Capture at Point Defects
7.2 Auger Recombination
   7.2.1 Theoretical Calculation
   7.2.2 Experimental Evidence for Auger Recombination
7.3 Hot Carrier Relaxation: Existence of a Phonon Bottleneck
8 Transport
8.1 Description of the Systems and of the Boundary Conditions
8.2 Weak Coupling Limit
   8.2.1 Perturbation Theory
   8.2.2 Orthodox Theory of Tunneling
8.3 Beyond Perturbation Theory
   8.3.1 Elastic Scattering Formalism
   8.3.2 Calculation of the Green's Functions
8.4 Electron-Electron Interactions Beyond the Orthodox Theory.
   8.4.1 Self-Consistent Mean-Field Calculations
   8.4.2 The Self-Consistent Potential Profile
   8.4.3 The Coulomb Blockade Effect
8.5 Transport in Networks of Nanostructures
   8.5.1 Tunneling Between Nanostructures
   8.5.2 Hopping Conductivity
   8.5.3 Coherent Potential Approximation
   8.5.4 Example of a Network of Silicon Nanocrystals
A Matrix Elements of the Renormalizing

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號