韋來生韋來生,男,1944年2月出生于江蘇江都。教授,博士生導師。1973-1995年在中國科技大學數(shù)學系, 1995年至今在中國科技大學統(tǒng)計與金融系從事教學科研工作。2004年獲安徽省優(yōu)秀教師稱號。美國Mathematical Reviews 評論員。主要研究方向: Bayes分析和經(jīng)驗Bayes 方法、線性模型參數(shù)估計和概率密度估計等。1992年曾訪問德國Dortmund大學統(tǒng)計系6個月,2000年曾訪問加拿大Waterloo大學統(tǒng)計與精算科學系3個月,并順訪了加拿大Guelph大學數(shù)學與統(tǒng)計系、美國新澤西州立大學統(tǒng)計系和紐約哥倫比亞大學統(tǒng)計系。曾主持和參加國家自然科學基金、高等學校博士點基金和中科院特持費基金等多項科研工作,研究工作曾獲中國科技大學科研成果一等獎和安徽省科技進步四等獎等。研究工作在《中國科學》、《數(shù)學學報》、《數(shù)學年刊》、《Ann.Inst.Statist.Math.》 、《Statisitca Sinica》、《Statistics Probability Letters》、《J. of Stat. Plann. & Inference》等國內(nèi)外核心期刊上發(fā)表論文60篇。論文目錄:[1] Wei Laisheng, Fang Zhaoban and Li Jinping, The asymptotically optimal empirical Bayesestimation about a class of Uniform distrbution (with Fang and Li), Journal of MathematicalResearch & Exposition, 3(1983), 150-152.[2] 韋來生,均勻分布簇 U(0,θ) 參數(shù)的經(jīng)驗 Bayes 估計的收斂速度, 應用數(shù)學學報, 6(1983), 485-493.[3] 韋來生,一類 Gamma 分布位置參數(shù)的經(jīng)驗 Bayes 估計的收斂速, 中國科學技術(shù)大學學報, 13(1983), 143-152.[4] 方兆本, 李金平, 張念范, 韋來生,一類均勻分布參數(shù)的經(jīng)驗 Bayes 估計的收斂速度,應用數(shù)學學報, 6(1983), 476-484.[5] Wei Laisheng, On the Lp convergence rates of kernal estimate of nonparametric regressionfunction, Journal of China University of Science & Technology, 14(1984), 339-346.[6] 韋來生,單邊截斷型分布簇位置參數(shù)的經(jīng)驗 Bayes 估計的收斂速度, 數(shù)學年刊, 6:A(1985), 193-202.[7] Wei Laisheng, The convergence rates of asymptotically Bayes discrimination,Acta Mathematica Scientia, 5(1985), 68-78.[8] 韋來生,連續(xù)形多參數(shù)指數(shù)簇參數(shù)的漸進最優(yōu)的經(jīng)驗 Bayes 估計, 應用概率統(tǒng)計, 1(1985), 127-133.[9] Wei Laisheng and Su Chun, On the pointwise Lp convergence rates of nearest neighborestimate of nonparametric regression function, Journal of Mathematical Research &Exposition, 6(1986), 117-124.[10] 韋來生, 連續(xù)形多參數(shù)指數(shù)簇參數(shù)的經(jīng)驗 Bayes 估計的收斂速度, 數(shù)學學報, 30(1987),272-279.[11] Wei Laisheng Asymptotically optimal empirical Bayes estimation for parameters of two-sided truncation distribution families, Chin. Ann. of Math., 10:B(1), 1989, 94-104.[12] Wei Laisheng, The convergence rates of empirical Bayes estimation for parameters oftwo-sided truncation distribution families, Acta Mathematica Scientia, 9(1989), 403-413.[13] Wei Laisheng, An empirical Bayes two-sided test problem for continuous one-parameterexponential families, Systems Science and Mathematical Science, 2(1989), 369-384.[14] Wei Laisheng, Empirical Bayes test of regression coefficient in a multiple linear regressionmodel, Acta Mathematicae Applicatae Sinica, 6(1990), 251-262.[15] 韋來生,一類離散型單參數(shù)指數(shù)簇參數(shù)的雙側(cè)的經(jīng)驗 Bayes 檢驗問題. 應用概率統(tǒng)計,7(1991), 299-310.[16] Singh, R.s. and Wei Laisheng, Empirical Bayes with rates and best rates of convergence inu(x)c(θ)exp{-x/θ}-family: Estimation Case, Ann. Inst. Statist. Math., 44(1992), 435-449.[17] 韋來生,二項分布參數(shù)的經(jīng)驗Bayes檢驗問題, 數(shù)學雜志, 13(1993), 21-28.[18] Zhanng Shunpu and Wei Laisheng, Asymptotically optimal empirical Bayes estimation inmultiple linear regression model, Appl. Math, A Journal of Chinese Universitys, 9:B(1994),245-258.[19] Wei Laisheng and Zhanng Shunpu, The converrgence rates of empirical Bayes estimation inmultiple linear regression model, Ann. Inst. Statist. Math., 47(1995), 81-97.[20] Wei Laisheng and Gotz trenkler, Mean square error matrix superiority of empirical Bayesestimators under misspecification, Test, 4(1995), 187-205.[21] Yang Yaning and Wei Laisheng, Convergence rtaes of asymptotically optimal empiricalBayes estimation for parameters of multi-parameter discrete exponential family, ChineseJ. Appl. Prob. and Statist., 11(1995), 92-102.[22] Yang Yaning and Wei Laisheng, Asymptotically optimal empirical Bayes estimation for theparameters of multi-parameter discrete exponential family, Acta Mathematica Scientia, 16(1996), 15-22.[23] Gotz Trenkler and Wei Laisheng, The Bayes estimators in a misspecified linear regressionmodel, Test,5(1996), 113-123.[24] 韋來生, PC 準則下錯誤指定模型中回歸系數(shù)有約束 LS 估計的優(yōu)良性, 中國科學技術(shù)大學學報, 26(1996), 277-283.[25] Wei Laisheng, Empirical Bayes estimation for estimable function of regression coefficient ina multiple linear regression model, Acta Mathematica Scientia, 16 Supp. (1996), 22-33.[26] 韋來生, 方差分析模型中參數(shù)的經(jīng)驗 Bayes 估計及其優(yōu)良性問題, 高校應用數(shù)學學報,12: A (1997), 163-174.[27] 韋來生, 楊亞寧, PC 準則下回歸系數(shù)的一類線性估計的優(yōu)良性, 應用概率統(tǒng)計, Vol.13(1997), 225-234.[28] Tamaschke, S., G. Trenkler and L.S. Wei, Mean square error matrix properties of Bayesestimation for incorrect prior information under misspecification, Journal of the ItalianStatistical Society, Vol.6(1997), No.3, 273-284.[29] Wei Laisheng, Convergence rates of empirical Bayesian estimation in a class of linearmodels, Statistica Sinica, 8(1998), 589-605.[30] Wei Laisheng, Asymptotically optimal empirical Bayes estimation in one-way ANOVAmodel, Systems Science and Mathematical Science, 12(1999), No.1, 13-22.[31] Zhang Shunpu and Wei Laisheng, A note about convergence rates for empirical Bayesestimation of parameters in multi-parameter exponential families, Commum.Statist.-Theory Meth., 28(6), 1999, 1273-1291.[32] 韋來生,林明, 誤指定模型中回歸系數(shù)混合估計的小樣本性質(zhì),中國科學技術(shù)大學學報, 29(1999), 253-259.[33] 韋來生,一類線性模型中參數(shù)的經(jīng)驗 Bayes 檢驗問題,數(shù)學年刊,20A:5(1999), 617-628.Wei Laisheng, Empirical Bayes test problems for parameters in a class of linear models,Chinese Journal of Contemporary Mathematics, 20(4), 1999, 501-514.[34] 韋來生,錯誤先驗假定下回歸系數(shù) Bayes 估計的小樣本性質(zhì),應用概率統(tǒng)計,16 (2000), 71-80.[35] 黃元亮,陳桂景,韋來生,廣義G-M 模型參數(shù)估計的相對效率,數(shù)學研究與評論,第20 期(2000),第1期, 103-108[36] 韋來生,刻度指數(shù)族參數(shù)的經(jīng)驗BAYES檢驗問題:NA樣本情形,應用數(shù)學學報,23(2000), 403-412.[37] Singh, R.S and Wei Laisheng, Nonparametrioc empirical Bayes procedure, asymptoticoptimality and rates of convergence for two-tail tests in exponential family, NonparametricStatistics, vol.12 (2000), 475-501.[38] 繆柏奇,戴小莉,韋來生等,課堂教學評估問卷的統(tǒng)計分析,中國高等教育評估,2000.2, 31-35.[39] 韋來生,NA 樣本情形概率密度函數(shù)核估計的相合性, 系統(tǒng)科學與數(shù)學, 21(2001),79-87.[40] 王立春, 韋來生, 刻度指數(shù)族參數(shù)的漸近最優(yōu)的經(jīng)驗 Bayes 估計, 中國科學技術(shù)大學學報, 32(1), 2002. 62-69.[41] Lin Ming and Wei Laisheng, The small sample properties of the principal componentsestimator for regression coefficients. Commum. Statist. Theory and Meth., 31(2),2002,271-283.[42] 林明,韋來生,回歸系數(shù) Stein 壓縮估計的小樣本性質(zhì), 應用數(shù)學學報,25(3), 2002,497-504.[43] 王立春, 韋來生, 刻度指數(shù)族參數(shù)的經(jīng)驗 Bayes 估計的收斂速度. 數(shù)學年刊,23A: 5(2002), 555-564.[44] Wei Laisheng and Chen Jiahua, Empirical Bayes estimation and its superiority for two-wayclassification model. Statistics and Probability Letters, 63, 2003, 165-175.[45] 韋來生, 袁家成, 指數(shù)分布定數(shù)截尾情形失效率函數(shù)的經(jīng)驗Bayes檢驗問題.應用概率統(tǒng)計,19(2) 2003, 130-138.[46] 韋來生, 王立春, 隨機效應模型中方差分量的經(jīng)驗Bayes檢驗問題. 高校應用數(shù)學學報, 19 (2004), 97——108.[47] 陳玲, 韋來生, 連續(xù)型單參指數(shù)族參數(shù)的經(jīng)驗Bayes檢驗問題,應用數(shù)學,17(2), 2004,263-270.[48] 魏莉, 韋來生, 刻度指數(shù)族參數(shù)的經(jīng)驗Bayes檢驗問題, 34(1), 2004, 1-10.[49] Wei Laisheng and Ding Xiao, On Empirical Bayes Estimation of Variance Components inRandom Effects Model. JSPI, 123(2004), 374-384.[50] 韋來生, 王立春, 隨機效應模型中方差分量漸近最優(yōu)的經(jīng)驗Bayes計,數(shù)學研究與評論,2004, 24(4),[51] Zhang Weiping , Wei Laisheng, Yang Yanning,The Superiority of Empirical BayesEstimator of Parameters in Linear Model, Statistics and Probability Letter, 72 (2005), 43-50.[52] Wei Laisheng and Zhang Weiping, Empirical Bayes Test Problems for VarianceComponents in Random Effects Model. Acta Mathematica Scientia, 25B (2005): 274-282.[53] 張偉平,韋來生,單向分類隨機效應模型中方差分量的漸近最優(yōu)經(jīng)驗Bayes估計,系統(tǒng)科學與數(shù)學, 25 (2005),106-117.[54] Zhang Weiping , Wei Laisheng, On Bayes Linear Unbiased Estimation of EstimableFunctions for the Singular Linear Model, Since in China,2005, 48 (7), 898-903.[55] 丁曉, 韋來生, 雙指數(shù)分布位置參數(shù)經(jīng)驗Bayes估計問題. 數(shù)學雜志,25 (4),2005,413-420.[56] Wei Laisheng and Wang Lichun , Empirical Bayes estimation of variance componentsintwo-way classification random effects model, 中國科學院研究生院學報,2005,22(5),545-553.[57] 陳玲,韋來生,連續(xù)型單參數(shù)指數(shù)族參數(shù)的經(jīng)驗Bayesg估計問題:NA 樣本情形,數(shù)學研究,2006,39(1), 44-50.[58] 宋慧明,韋來生, 線性模型中回歸系數(shù)混合估計的相對效率,中國科學技術(shù)大學學報, 2006,36(9), 932-935.[59] Wang Lichun, Wei Laisheng, Asymptotically optimal empirical Bayes decision,應用數(shù)學,2006, 19(2),356-362.[60] 洪 堅,韋來生,指數(shù)分布定數(shù)截尾樣本下經(jīng)驗Bayes雙側(cè)檢驗問題,中國科學技術(shù)大學學報, 2006,36(12).