注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)黎曼幾何

黎曼幾何

黎曼幾何

定 價(jià):¥49.00

作 者: (葡萄牙)(Carmo M.p.)卡莫
出版社: 世界圖書出版公司
叢編項(xiàng):
標(biāo) 簽: 幾何與拓?fù)?/td>

ISBN: 9787506292184 出版時(shí)間: 2008-01-01 包裝: 平裝
開本: 32 頁(yè)數(shù): 300 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  The object of this book is to familiarize the reader with the basic language of and some fundamental theorems in Riemannian Geometry. To avoid referring to previous knowledge of differentiable manifolds, we include Chapter 0, which contains those concepts and results on differentiable manifolds which are used in an essential way in the rest of the book。The first four chapters of the book present the basic concepts of Riemannian Geometry (Riemannian metrics, Riemannian connections, geodesics and curvature). A good part of the study of Riemannian Geometry consists of understanding the relationship between geodesics and curvature. Jacobi fields, an essential tool for this understanding, are introduced in Chapter 5. In Chapter 6 we introduce the second fundamental form associated with an isometric immersion, and prove a generalization of the Theorem Egregium of Gauss. This allows us to relate the notion of curvature in Riemannian manifolds to the classical concept of Gaussian curvature for surfaces。

作者簡(jiǎn)介

暫缺《黎曼幾何》作者簡(jiǎn)介

圖書目錄

Preface to the first edition
Preface to the second edition
Preface to the English edition
How to use this book
CHAPTER 0-DIFFERENTIABLE MANIFOLDS
 1. Introduction
 2. Differentiable manifolds;tangent space
 3. Immersions and embeddings;examples
 4. Other examples of manifolds,Orientation
 5. Vector fields; brackets,Topology of manifolds
CHAPTER 1-RIEMANNIAN METRICS
 1. Introduction
 2. Riemannian Metrics
CHAPTER 2-AFFINE CONNECTIONS;RIEMANNIAN CONNECTIONS
 1. Introduction
 2. Affine connections
 3. Riemannian connections
CHAPTER 3-GEODESICS;CONVEX NEIGHBORHOODS
 1.Introduction
2.The geodesic flow
3.Minimizing properties ofgeodesics
4.Convex neighborhoods
CHAPTER 4-CURVATURE
1.Introduction
2.Curvature
3.Sectional curvature
4.Ricci curvature and 8calar curvature
5.Tensors 0n Riemannian manifoids
CHAPTER 5-JACOBI FIELDS
1.Introduction
2.The Jacobi equation
3.Conjugate points
CHAPTER 6-ISOMETRIC IMMERSl0NS
1.Introduction.
2.The second fundamental form
3.The fundarnental equations
CHAPTER 7-COMPLETE MANIFoLDS;HOPF-RINOW AND HADAMARD THEOREMS
1.Introduction.
2.Complete manifolds;Hopf-Rinow Theorem.
3.The Theorem of Hadamazd.
CHAPTER 8-SPACES 0F CONSTANT CURVATURE
1.Introduction
2.Theorem of Cartan on the determination ofthe metric by mebns of the curvature.
3.Hyperbolic space
4.Space forms
5.Isometries ofthe hyperbolic space;Theorem ofLiouville
CHAPTER 9一VARIATl0NS 0F ENERGY
1.Introduction.
2.Formulas for the first and second variations of enezgy
3.The theorems of Bonnet—Myers and of Synge-WeipJtein
CHAPTER 10-THE RAUCH COMPARISON THEOREM
1.Introduction
2.Ttle Theorem of Rauch.
3.Applications of the Index Lemma to immersions
4.Focal points and an extension of Rauch’s Theorem
CHAPTER 11—THE MORSE lNDEX THEOREM
1.Introduction
2.The Index Theorem
CHAPTER 12-THE FUNDAMENTAL GROUP OF MANIFOLDS 0F NEGATIVE CURVATURE
1.Introduction
2.Existence of closed geodesics
CHAPTER 13-THE SPHERE THEOREM
References
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)