注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)物理學(xué)固體中的介電弛豫(影印版)

固體中的介電弛豫(影印版)

固體中的介電弛豫(影印版)

定 價(jià):¥50.00

作 者: (英)瓊克(Jonscher,A.k.) 著
出版社: 西安交通大學(xué)出版社
叢編項(xiàng): 經(jīng)典電介質(zhì)科學(xué)叢書(shū)
標(biāo) 簽: 電動(dòng)力學(xué)

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787560527062 出版時(shí)間: 2008-02-01 包裝: 平裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 380 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《固體中的介電弛豫(影印版)》是研究固體中介電弛豫現(xiàn)象的專(zhuān)著,被電介質(zhì)領(lǐng)域的許多研究者奉為經(jīng)典。作者提出在所有固體介質(zhì)中存在普適的分?jǐn)?shù)指數(shù)弛豫定律,其觀點(diǎn)在學(xué)術(shù)界經(jīng)歷了從不被理解到廣泛接受的曲折過(guò)程。書(shū)中介紹了介質(zhì)極化的基礎(chǔ)知識(shí)和介電函數(shù)的表述方法,在此基礎(chǔ)上討論了幾種理想化模型的的動(dòng)態(tài)響應(yīng)特征,結(jié)合頻域響應(yīng)和時(shí)域響應(yīng)的多種實(shí)驗(yàn)現(xiàn)象,總結(jié)提出了介電弛豫的多體普適模型?!豆腆w中的介電弛豫(影印版)》行文流暢、簡(jiǎn)明扼要,可作為物理、電子、材料、電氣等相關(guān)專(zhuān)業(yè)的教師、研究生和科研人員的參考書(shū)。精讀此書(shū)有助于深入、全面地理解電介質(zhì)、半導(dǎo)體、電池及其他電子元器件測(cè)量中的實(shí)驗(yàn)結(jié)果。

作者簡(jiǎn)介

  A.K.瓊克,(A.K.Jonscher,1922—2005),生于波蘭華沙,1949年在倫敦大學(xué)瑪麗皇后學(xué)院以一級(jí)榮譽(yù)學(xué)士學(xué)位畢業(yè),并在該校Harry Tropper教授的指導(dǎo)下于1952年獲得博士學(xué)位,1951年起在GEC研究實(shí)驗(yàn)室工作,從事半導(dǎo)體器件物理原理方面的研究工作,1962年以Reader身份加入倫敦大學(xué)切爾西學(xué)院,1965年成為固態(tài)電子學(xué)教授,1987年成為倫敦大學(xué)皇家霍洛威與貝德福德斯學(xué)完榮譽(yù)教授,1990年受邀擔(dān)綱IEEE“普適介電響應(yīng)”杰出懷特海榮譽(yù)講席。瓊克教授在介電弛豫研究方面具有很深的造詣,他于1983年和1996年分別出版的學(xué)術(shù)專(zhuān)著《固體中的介電弛豫》和《普適弛豫定律》,在國(guó)際學(xué)術(shù)界享有盛譽(yù)。姚熹,1935年生于中國(guó)江蘇蘇州。1957年畢業(yè)于交通大學(xué)電機(jī)系,1982年獲美國(guó)賓夕法尼亞州立大學(xué)固態(tài)科學(xué)博士學(xué)位。1957年至今在西安交通大學(xué)任教,1984年起任西安交通大學(xué)教授。1989年當(dāng)選國(guó)際陶瓷科學(xué)院首批院士。1991年當(dāng)選中國(guó)科學(xué)院院士。2002年當(dāng)選美國(guó)陶瓷學(xué)會(huì)會(huì)士。2007年因“在電子陶瓷科學(xué)和工程創(chuàng)新方面做出了杰出貢獻(xiàn)”當(dāng)選美國(guó)國(guó)家工程院外籍院士。

圖書(shū)目錄

Preface
Useful Physical Constants
Chapter 1
INTRODUCTION
1.1 Dielectrics and insulators
1.2 The nature of dielectric response
1.3 The purpose and scope of the present treatment
References to Chapter 1
Chapter 2 THE PHYSICAL AND MATHEMATICAL BASIS OF DIELECTRIC POLARISATION
2.1 Charges, dipoles and chemical bonds
2.2 Dielectric polarisation
2.3 Polarisation in static electric fields
a) Orientational polarisation - freely floating dipoles
b) Molecular polarisability - induced dipole moment
c) Orders of magnitude of dipole moments and polarisabilities
d) Polarisation by hopping charge carriers
2.4 Effect of particle interactions
2.5 Time-dependent dielectric response
2.6 Frequency-domain response
2.7 Permittivity, conductivity and loss
2.8 Kramers-Kronig relations
Appendix 2.1 Fourier transform of the convolution integral
Appendix 2.2 Computer programs for Kramers-Kronig transformation C--* G and G--* C
References to Chapter 2
Chapter 3 PRESENTATION OF DIELECTRIC FUNCTIONS
3.1 Introduction
3.2 Admittance, impedance, permittivity
3.3 More complicated equivalent circuits
i) Series R-C in parallel with C~
ii) Resistance in series with parallel G--C combination
iii) Capacitance in series with parallel G--C combination
iv) Two parallel circuits in series
v) Distributed R-C line
3.4 Summary of simple circuit responses
3.5 Logarithmic impedance and admittance plots
3.6 The response of a "universal" capacitor
3.7 Representation in the complex permittivity plane
3.8 Representation of the temperature dependence
Appendix 3.1 Time domain, rotating vectors and frequency domain
Appendix 3.2 Inversion in the complex plane
References to Chapter 3
Chapter 4 THE DYNAMIC RESPONSE OF IDEALISED PHYSICAL MODELS
4.1 Introduction
4.2 The harmonic oscillator
4.3 An inertialess system with a restoring force
ii) Schottky barriers and p-n junctions
iii) Charge generation~recombination processes
iv) Trapping phenomena
4.8 Diffusive transport
4.9 Concluding comments
Appendix 4.1 The complex susceptibility of an inertialess system with a restoring force
Appendix 4.2 Relaxation of "free" charge
References to Chapter 4
Chapter 5 EXPERIMENTAL EVIDENCE ON THE FREQUENCYR ESPONSE
5.1 Introduction
5.2 Near-Debye responses
5.3 Broadened and asymmetric dipolar loss peaks
a) Polymeric materials
b) Other dipolar systems
c) Dipolar response at cryogenic temperatures
d) Characterisation of dielectric loss peaks
5.4 Dielectric behaviour of p-n junctions
5.5 Dielectric response without loss peaks
a) Charge carriers in dielectric materials
b) Alternating current conductivity of hopping charges
c) Fast ionic conductors
5.6 Strong low-frequency dispersion
5.7 Frequency-independent loss
5.8 Superposition of different mechanisms
5.9 Survey of frequency response information
References to Chapter 5
Chapter 6 EXPERIMENTAL EVIDENCE ON THE TIME RESPONSE
6.1 The role of time-domain measurements
6.2 The significance of loss peaks in the time--domain
6.3 The Hamon approximation
6.4 Evidence for inertial effects
6.5 Long-time behaviour in low-loss polymers
6.6 Detection on non-linearities by time--domain measurements
6.7 Contribution of charge carriers to the dielectric response
6.8 Other charge carrier phenomena
a) Charge injection and surface potential
b) Energy loss arising from the movement of charges
c) Dispersive charge flow
d) Charge carrier systems with strong dispersion
6.9 Conclusions regarding time--domain evidence
a) The presence to two power laws
b) The temperature dependence of the universal law
c) Limiting forms of response at "zero" and "infinite" times
d) The Debye "singularity"
e) Time--dom
7.2 Distributions of relaxation times (DRT's)
7.3 Distributions of hopping probabilities
7.4 Correlation function approaches
7.5 Local field theories
7.6 Diffusive boundary conditions
7.7 Interracial phenomena and the Maxwell-Wagner effect
7.8 Transport limitation at the boundaries
7.9 The need for an alternative approach
References to Chapter 7
Chapter 8 THE MANY-BODY UNIVERSAL MODEL OF DIELECTRIC RELAXATION
8.1 The conditions for the occurrence of the universal response
8.2 A descriptive approach to many-body interaction
a) The screened hopping model
b) The role of disorder in the dielectric response
c) The correlated states
d) "Large" and "small" transitions
8.3 The infra-red divergence model
a) The inapplicability of exponential relaxation in time
b) Physical concepts in infra-red divergence
c) The Dissado-Hill model of "large" and "small" transitions
d) The small flip transitions
e) Fluctuations or flip-flop transitions
f) The complete analytical development of relaxation
8.4 The consequences of the Dissado-Hill theory
a) The significance of the loss peak
b) The temperature dependence of the loss peak
c) Dipole alignment transitions
d) The exponents m and n
e) The temperature dependence of the "flat" loss
f) The narrow range of ac conductivities
8.5 Clustering and strong low-frequency dispersion
8.6 Energy relations in the many-body theory
a) Stored energy in the static and transient regimes
b) Transfer of energy to the heat bath
c) Dielectric and mechanical loss
8.7 The dynamics of trapping and recombination in semiconductors
8.8 Dielectric diagnostics of materials
8.9 Conclusions
Appendix 8.1 The infra-red divergence
References to Chapter 8
Author Index
Subject index

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)