《樣條函數(shù)實用指南(修訂版)》是著名數(shù)學(xué)家Carl de Boor的《樣條函數(shù)實用指南》(1978)的修訂版。原版本許多錯誤在修訂版中得到了全面糾正。尤其是第九章到第十一章作了較大的修改,B-樣條理論是直接建立在不依賴于均差的遞歸關(guān)系。這使得節(jié)點插入成為一個提供B-樣條序列保形特性簡單證明的強有力工具。本書的章節(jié)安排詳略得當(dāng),重點突出,有利于讀者學(xué)習(xí)理解。第一章簡要講述了多項式插值,特別是均差理論。第二章介紹了初步的多項式逼近論知識,并為講述分段多項式函數(shù)做準(zhǔn)備。只想了解樣條函數(shù)大體知識的讀者可以略過隨后的四章。它們主要講述了分段線性逼近、分段立方插值以及拋物型樣條插值。第七、八章講述了任意序的分段多項式函數(shù)的計算處理。第九、十、十一章介紹了B-樣條。余下的幾章介紹了各種應(yīng)用,幾乎都涉及到B-樣條。每章后面都附有習(xí)題,供讀者練習(xí)和加深理解,并且附有不少圖形和程序。本書講解透徹,但某些基本知識被略去,要求讀者有較好的數(shù)值逼近、幾何等的基礎(chǔ)。本書為全英文版。
作者簡介
暫缺《樣條實用指南(修訂版 英文版)》作者簡介
圖書目錄
Preface Notation I Polynomial Interpolation Polynomial Interpolation:Lagrange form Polynomial Interpolation:Divided differences and Newton Form Divided difference table Example:Osculatory interpolation to the logarithm Evaluation of the Newton form Example:COmputing the derivatives of a polynomial in Newton form Other polynomial forms and conditions Problems II Limitations of Polynomial Approximation Uniform spacing of data can have bad consquences Chebyshev sites are good Runge example with Chebyshev sites Squareroot example Interpolation at Chebyshev sites is nearly optimal The distance form polynomials Problems III Piecewise Linear Approximation Broken line interpolation Borken line interpolation is nearly optimal Least-squares approximation by broken lines Good meshes Problems IV Piecewise Cubic Interpolation Piecewise cubic Hermite interpolation Runge example continued Piecewise cubic Bessel interpolation Akimas interpolation Cubic spline interpolation Boundary conditions Problems V Best Approximation Properties of Complete Cubic Spline Interpolation and Its Error Problems VI Parablolic Spline Interpolation Problems VII A Representation for Piecewise Polynomial Functions VIII The Spaces II and the Truncated Power Basis IX The Representation of PP Functions by B-Splines X The Stable Evaluation of B-Splines and Sploines XI The B-Spline Series Control Points and Knot Insertion XII Local Spline Approximation and the Distance from Splines XIII Spline Interpolation XIV Smoothing and Least-Squares APproximation XV The Numerical Solution of an Ordinary Differential Equation by Collocation XVI Taut Splines Periodic Splines Cardinal SAplines and the APproximation of Curves XVII Surface Approximation by Tensor Products Postscript on Things Not Covered Appendix:Fortran Programs Bibliography INdex