注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)時間序列分析實例研究(英文版)

時間序列分析實例研究(英文版)

時間序列分析實例研究(英文版)

定 價:¥45.00

作 者: 謝忠杰 著
出版社: 世界圖書出版公司
叢編項:
標(biāo) 簽: 概率論與數(shù)理統(tǒng)計

ISBN: 9787506273077 出版時間: 2006-12-01 包裝: 平裝
開本: 24開 頁數(shù): 282 字數(shù):  

內(nèi)容簡介

  《時間序列分析實例研究》是一本有關(guān)時間序列分析應(yīng)用于實際的實證分析研究的專著。全書分為兩大部分:第一部分簡要介紹了時間序列分析的基礎(chǔ)理論和方法。這些內(nèi)容是讀懂《時間序列分析實例研究》各案例研究所必備的基本知識;第二部分是案例研究。從中讀者可看出時間序列分析是如何廣泛地應(yīng)用于實際并成為解決各種問題的核心工具。書中的案例涉及到當(dāng)年中國科學(xué)家從自己的觀測記錄中是如何發(fā)現(xiàn)天王星的光環(huán)的,濾波理論如何應(yīng)用于中國東海和黃海的重力勘探,譜分析如何判別先天性愚型兒童的腦電特征、多元譜的K-L信息量如何應(yīng)用于優(yōu)秀飛行員的生理特征的檢測,潛周期分析如何發(fā)現(xiàn)離體腦垂體仍有內(nèi)分泌的節(jié)律周期。預(yù)測理論如何應(yīng)用于氣象的建模和預(yù)報,等等許多非常有趣而真實的研究案例。這些研究成果使作者獲得了中國國家自然科學(xué)獎和國內(nèi)外的多項獎項。讀者通過《時間序列分析實例研究》的學(xué)習(xí)不僅可學(xué)到時間序列分析的基本理論和方法.更重要的是《時間序列分析實例研究》介紹了”如何將一個實際問題轉(zhuǎn)化成數(shù)學(xué)問題”,然后運用數(shù)學(xué)和統(tǒng)計學(xué)的理論和方法加以解決,這包括最后還原到實際,用實驗數(shù)據(jù)加以檢驗的完整過程?!稌r間序列分析實例研究》可作為應(yīng)用時間序列分析領(lǐng)域的大學(xué)生和研究生教學(xué)參考書或補充教材,也是應(yīng)用統(tǒng)計工作者和相關(guān)學(xué)科的科技人員、工程師很有價值的參考資料。

作者簡介

暫缺《時間序列分析實例研究(英文版)》作者簡介

圖書目錄

Preface
PART ONE
An Introduction to the Theory and Methods of Time Series Analysis
Chapter 1.Theory of Stationary Time Series
1.1 The definition of stationary stochastic processes
 1.2 The spectral representation of covariance function
 1.3 The Hilbert space of second order processes
 1.4 Stochastic integral and the isomorphic relationship between H~ and the functional space L2(dFe)
1.4.1 Orthogonal stochastic measure
1.4.2 Stochastic integral and the representation of stationary processes
1.4.3.Karhunen theorem
 1.5 Strong law of large numbers for stationary series
 1.6 Sampling theorem for stochastic stationary processes
Chapter 2.ARMA Model and Model Fitting
 2.1 ARMA model and the Wold decomposition
 2.2 Orthogonal basis in Hilbert space Hf
 2.3 The covariance function of ARMA model and Yule-Walker equation
 2.4 Model fitting under the criterion of one-step ahead prediction error
 2.5 M.E.model fitting for observed data
2.5.1 M.E.model fitting with sample covariance
2.5.2 Order selection problem
Chapter 3.Prediction, Filtering and Spectral Analysis of Time Series
 3.1 Prediction of time series
3.1.1 The prediction formula for AR models
3.1.2 The prediction formula for ARMA models
 3.2 The linear filtering of time series
 a.a Spectral analysis of time series
3.3.1 Theory and methods of hidden periodicities analysis
3.3.2 Theory and methods of spectral density estimations
PART TWO Case Studies in Time Series Analysis
 Case I.Digital Processing of a Dynamic Marine Gravity Meter
  1.Problem statement and working diagram of a dynamic marine gravity meter
  2.The first test for solving the problem
  3.Design a new digital filter under Min-Max criterion
  4.The frequency rectification by filtering
  5.Practical checking in the prospecting field of the East Sea of China
 Case II.Digital Filters Design by Maximum Entropy Modelling
  1.Problem statement
  2.Design the filter by maximum entropy modelling
  3.A practical filter design
 Case III.The Spectral Analysis of the Visual Evoked Potentials of Normal and Congenital Dull Children (Down's disease)
  1.Introduction
  2.Spectral analysis of VEP records for dull and normal children
  3.Statistical analysis for detection of characteristics
  4.Physiological interpretation
 Appendix III
 Case IV.Statistical Analysis of VEP and AI by the Principal Component Analyis of Time Serise in Frequency Domain
Case V.Periodicity Analysis of LH Release in Isolated Pituitary Gland by Hidden Frequency Analysis
Case VI.Statistical Detection of Uranian Ring Signnals from the Light Curve of Photoelectric Observation
Case VII.On the Forecasting of Freight Transportation by a New Model Fitting Procedure of Time Series
Case VIII.The Water Flow Prediction in Xiang River
Case IX.Miscellaneous Cases Study
Bibliography
Subject Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號