注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)復(fù)分析(英文版)

復(fù)分析(英文版)

復(fù)分析(英文版)

定 價(jià):¥38.00

作 者: Elias M.Stein,Rami Shakarchi 著
出版社: 世界圖書出版公司
叢編項(xiàng): 數(shù)學(xué)經(jīng)典英文教材系列
標(biāo) 簽: 函數(shù)

ISBN: 9787506282314 出版時(shí)間: 2007-01-01 包裝: 平裝
開本: 頁(yè)數(shù): 379 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書由在國(guó)際上享有盛譽(yù)的普林斯頓大學(xué)教授Stein等撰寫而成, 是一部為數(shù)學(xué)及相關(guān)專業(yè)大學(xué)二年級(jí)和三年級(jí)學(xué)生編寫的教材,理論與實(shí)踐并重。為了便于非數(shù)學(xué)專業(yè)的學(xué)生學(xué)習(xí),全書內(nèi)容簡(jiǎn)明、易懂,讀者只需掌握微積分和線性代數(shù)知識(shí)。關(guān)于本書的詳細(xì)介紹,請(qǐng)見“影印版前言”。本書已被哈佛大學(xué)和加利福尼亞理工學(xué)院選為教材。與本書相配套的教材《傅立葉分析導(dǎo)論》和《實(shí)分析》也已影印出版。

作者簡(jiǎn)介

  SteIn在國(guó)際上享有盛譽(yù),現(xiàn)任美國(guó)普林斯頓大學(xué)數(shù)學(xué)系教授。他是當(dāng)代分析,特別是調(diào)和分析領(lǐng)域領(lǐng)袖人物之一。古典調(diào)和分析最困難問題之一是推廣到多維。他是多維歐氏調(diào)和分析的創(chuàng)造者之一,為此他發(fā)展了許多先進(jìn)工具,如奇異積分、Radon變換、極大函數(shù)等。他還發(fā)展了多個(gè)實(shí)變?cè)腍ardy空間理論,推廣了1971年F J0hn和L.Nirenberg的重要發(fā)現(xiàn):即Hardy空間與BMO空間的對(duì)偶。他在群上的調(diào)和分析方面也有貢獻(xiàn),例如同R.Kunze一起發(fā)現(xiàn)所謂Kunze-stein現(xiàn)象。除此之外,他對(duì)多復(fù)變問題也做出了突出成績(jī)。除了研究工作之外,他的許多著作成為影響學(xué)科發(fā)展的重要參考文獻(xiàn)。為此,他榮獲1984年美國(guó)數(shù)學(xué)會(huì)Steele獎(jiǎng)。由于他的成就,1974年被選為美國(guó)國(guó)家科學(xué)院院士,1982年被選為美國(guó)文理學(xué)院院士,1993年獲得瑞士科學(xué)院頒發(fā)的schock獎(jiǎng),1999年獲得世界性Wolf數(shù)學(xué)獎(jiǎng)。

圖書目錄

Foreword
Introductlon
Chapter 1.Preliminaries to Complex Analysis
l Complex numbers and the eompicx plane
1.1 Basic properties
l.2 Convergence
1.3 Sets in tim complex plane
2 Functions on the complex plane
2.l Conltinuous fnetions
2.2 Holomorphic fimctions
2.3 P0weI series
3 Integration along crvcs
4 Exorcises
Chapter 2 Cauchy’s Theorem and Its Applications
1 Goursat’s theorem
2 Local existencc of primitives and Cauchy s theorem in a
disc
3 EvaIuatlon of some integrals
4 Cauchy’s integral formulas
5 1lrther applications
5.1 Morera’s tImorem
5.2 Sequences of holomorphic functions
5.3 Holomorphic functions defined in terms of integrals
5.4 Schwarz reflection principle
5.5 Runge’s approxlnlatlon theorem
6 Exereises
7 Problems
Chapter 3.Meromorphic Functions and the Logarithm
1 Zeros and polcs
2 The residue formuia
2.l Examples
3 Singularities and meromorphic functions
4 The argmuent principle and applications
5 Homotopies and simply connected domains
6 The complex logarithm
7 Fourier series and harmonic functions
8 Exercises
9 Problenis
Chapter 4. The Fourier Transforin
1 The class
2 Action of the Fourier transform on
3 Palev-wiener tbeorem
4 Exercises
5 Problems
Chapter 5. Entire Functions
1 Jensen's formUla
2 Functions of finite order
3 Infinite products
3.1 Generalities
3.2 Example: the product foemula for the sine function
4 Weierstrass infinite products
5 Hadamard's factorozatoon theorem
6 Exercises
7 Problems
Chapter 6. The Gamma and Zeta Functions
1 The gamma function
1.1 Analytic continuation
1.2 Furtiicr properties of F
2 The zeta function
2.1 Functional equation and analytic continuation
3 Exercises
4 Problems
Chapter 7. The Zeta Function and Prime Number The-orem
1 Zeros of tile zeta function
hl Esthnates for 1/C(S)
2 Reduction to the functions
2.1 Proof of the asymptotics for
Note on interchanging double sums
3 Exercises
4 problems
Chapter 8. Conformal Mappings
Chapter 9. An Introduction to Elliptic Functions
Chapter 10. Applications of Theta Functions
Appendix A: Asymptotics
Appendix B: Simple Connectivity and Jordan Curve Theorem
Notes and References
Bibliography
Symbol Glossary
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)