注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)運(yùn)籌學(xué):優(yōu)化模型與算法

運(yùn)籌學(xué):優(yōu)化模型與算法

運(yùn)籌學(xué):優(yōu)化模型與算法

定 價(jià):¥89.00

作 者: (美)拉?。≧ardin,R.L.)
出版社: 電子工業(yè)出版社
叢編項(xiàng):
標(biāo) 簽: 運(yùn)籌學(xué)

購(gòu)買這本書可以去


ISBN: 9787121049255 出版時(shí)間: 2007-09-01 包裝: 平裝
開本: 16 頁數(shù): 919 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書是一本適應(yīng)當(dāng)今運(yùn)籌學(xué)發(fā)展趨勢(shì)的優(yōu)秀的綜合性入門教材,主要特點(diǎn)是重視建模和算法的結(jié)合,引入了相關(guān)的建模工具以及用其進(jìn)行模型開發(fā)的基本技巧。全書共分14章,前3章介紹數(shù)學(xué)模型的問題求解和改進(jìn)搜索的基本概念與原理,其余內(nèi)容則覆蓋了確定型優(yōu)化領(lǐng)域的幾乎全部?jī)?nèi)容,除了傳統(tǒng)的線性規(guī)劃的模型、算法、對(duì)偶理論和靈敏度分析等內(nèi)容以外,還包括了網(wǎng)絡(luò)流、整數(shù)/組合優(yōu)化、非線性規(guī)劃和目標(biāo)規(guī)劃等領(lǐng)域的基本模型和主要算法。此外,本書還包含了遺傳算法、模擬退火、禁忌搜索和分支切割算法等前沿內(nèi)容。全書采用統(tǒng)一的理論框架,以簡(jiǎn)單的“改進(jìn)搜索”思路貫穿始終,全面且循序漸進(jìn)地演繹了各種優(yōu)化算法和方法,包括傳統(tǒng)的單純形法、牛頓法、網(wǎng)絡(luò)流算法以及各種啟發(fā)式算法,使讀者感受到每次引入的新算法都建立在以往算法的基礎(chǔ)上,直觀且邏輯性強(qiáng),易于理解。本書收錄了豐富的實(shí)際案例,并有大量上機(jī)習(xí)題,便于理論結(jié)合實(shí)踐。

作者簡(jiǎn)介

  ROilald L,Rardin,美國(guó)數(shù)學(xué)規(guī)劃和優(yōu)化理論及其應(yīng)用運(yùn)籌學(xué)方面的著名學(xué)者。于1974年從佐治亞理工學(xué)院獲得博士學(xué)位,長(zhǎng)期任普度大學(xué)工業(yè)工程系教授、普度大學(xué)能源建模研究組(PEMRG)主任和Regenstrief醫(yī)療保健工程研究中心(RCHE)主任,還曾擔(dān)任美國(guó)國(guó)家自然科學(xué)基金會(huì)運(yùn)籌學(xué)和服務(wù)企業(yè)項(xiàng)目主任。Raldin教授的教學(xué)和研究重點(diǎn)是大規(guī)模優(yōu)化的建模與算法,包括在醫(yī)療保健系統(tǒng)、交通與物流系統(tǒng)以及能源規(guī)劃方面的應(yīng)用。他曾四次榮獲普度大學(xué)在工業(yè)工程方面的Pritsker杰出教學(xué)獎(jiǎng),是美國(guó)工業(yè)工程學(xué)會(huì)、運(yùn)籌學(xué)與管理科學(xué)學(xué)會(huì)以及數(shù)學(xué)規(guī)劃學(xué)會(huì)的會(huì)員。Rardin教授現(xiàn)已加入阿肯色大學(xué)。

圖書目錄

CHAPTER I PROBLEM SOLVING WITH MATHEMATICAL MODELS
 1.1 OR Application Stories
 1.2 Optimization and the Operations Research Process
 1.3 System Boundaries, Sensitivity Analysis, Tractability and Validity
 1.4 Descriptive Models and Simulation
 1.5 Numerical Search and Exact versus Heuristic Solutions
 1.6 Deterministic versus Stochastic Models
 1.7 Perspectives
 Exercises
CHAPTER 2 DETERMINISTIC OPTIMIZATION MODELS IN OPERATIONS RESEARCH
 2.1 Decision Variables, Constraints, and Objective Functions
 2.2 Graphic Solution and Optimization Outcomes
 2.3 Large-Scale Optimization Models and Indexing
 2.4 Linear and Nonlinear Programs
 2.5 Discrete or Integer Programs
 2.6 Multiobjective Optimization Models
 2.7 Classification Summary
 Exercises
CHAPTER 3 IMPROVING SEARCH
 3.1 Improving Search, Local and Global Optima
 3.2 Search with Improving and Feasible Directions
 3.3 Algebraic Conditions for Improving and Feasible Directions
 3.4 Unimodel and Convex Model Forms Tractable for Improving Search
 3.5 Searching and Starting Feasible Solutions
 Exercises
CHAPTER 4 LINEAR PROGRAMMING MODELS
 4.1 Allocation Models
 4.2 Blending Models
 4.3 Operations Planning Models
 4.4 Shift Scheduling and Staff Planning Models
 4.5 Time-Phased Models
 4.6 Models with Linearizable Nonlinear Objectives
 Exercises
CHAPTER 5 SIMPLEX SEARCH FOR LINEAR PROGRAMMING
 5.1 LP Optimal Solutions and Standard Form
 5.2 Extreme-Point Search and Basic Solutions
 5.3 The Simplex Algorithm
 5.4 Dictionary and Tableau Representations of Simplex
 5.5 Two Phase Simplex
 5.6 Degeneracy and Zero-Length Simplex Steps
 5.7 Convergence and Cycling with Simplex
 5.8 Doing It Efficiently: Revised Simplex
 5.9 Simplex with Simple Upper and Lower Bounds
 Exercises
CHAPTER 6 INTERIOR POINT METHODS FOR LINEAR PROGRAMMING
  6.1 Searching through the Interior
  6.2 Scaling with the Current Solution
  6.3 Affine Scaling Search
  6.4 Log Barrier Methods for Interior Point Search
  6.5 Dual and Primal-Dual Extensions
  Exercises
CHAPTER 7 DUALITY AND SENSITIVITY IN LINEAR PROGRAMMING
  7.1 Generic Activities versus Resources Perspective
  7.2 Qualitative Sensitivity to Changes in Model Coefficients
  7.3 Quantifying Sensitivity to Changes in LP Model Coefficients: A Dual Model
  7.4 Formulating Linear Programming Duals
  7.5 Primal-to-Dual Relationships
  7.6 Computer Outputs and What If Changes of Single Parameters
  7.7 Bigger Model Changes, Reoptimization, and Parametric Programming
  Exercises
CHAPTER 8 MULTIOBYECTIVE OPTIMIZATION AND GOAL PROGRAMMING
  8.1 Multiobjective Optimization Models
  8.2 Efficient Points and the Efficient Frontier
  8.3 Preemptive Optimization and Weighted Sums of Objectives
  8.4 Goal Programming
  Exercises
CHAPTER 9 SHORTEST PATHS AND DISCRETE DYNAMIC
CHAPTER 10 NETWORK FLOWS
CHAPTER 11 DISCRETE OPTIMIZATION MODELS
CHAPTER 12 DISCRETE OPTIMIZATION METHODS
CHAPTER 13 UNCONSTRAINED NONLNEAR PROGRAMMING
CHAPTER 14 CONSTRAINED NONLINEAR PROGRAMMING
……
SELECTED ANSWERS
INDEX

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)