注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)計(jì)算機(jī)/網(wǎng)絡(luò)人工智能非線性系統(tǒng)(英文版)

非線性系統(tǒng)(英文版)

非線性系統(tǒng)(英文版)

定 價(jià):¥79.00

作 者: (美)薩斯特 著
出版社: 世界圖書(shū)出版公司
叢編項(xiàng):
標(biāo) 簽: 人工智能

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787506282949 出版時(shí)間: 2007-05-01 包裝: 平裝
開(kāi)本: 24開(kāi) 頁(yè)數(shù): 667 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  近十年來(lái)非線性系統(tǒng)中分析與控制出現(xiàn)了許多新的數(shù)學(xué)工具,幾何非線性控制的綜合理論也有較大發(fā)展,基于此,非線性系統(tǒng)模擬和精密實(shí)時(shí)非線性控制律的計(jì)算功能有了巨大的進(jìn)步。這種技巧上的發(fā)展促進(jìn)了分析方法的發(fā)展?!斗蔷€性系統(tǒng)》簡(jiǎn)要介紹了分析的方法和工具。

作者簡(jiǎn)介

暫缺《非線性系統(tǒng)(英文版)》作者簡(jiǎn)介

圖書(shū)目錄

Preface
Acknowledgments
Standard Notation
1 Linear vs. Nonlinear
1.1 Nonlinear Models
1.2 Complexity in Nonlinear Dynamics
1.2.1 Subtleties of Nonlinear Systems Analysis
1.2.2 Autonomous Systems and Equilibrium Points
1.3 Some Classical Examples
1.3.1 The Tunnel Diode Circuit
1.3.2 An Oscillating Circuit: Due to van der Po!
1.3.3 The Pendulum: Due to Newton
1.3.4 The Buckling Beam: Due to Euler
1.3.5 The Volterra-Lotka Predator-Prey Equations
1.4 Other Classics: Musical Instruments
1.4.1 Blowing of a Clarinet Reed: Due to Rayleigh
1.4.2 Bowing of a Violin String: Due to Rayleigh
1.5 Summary
1.6 Exercises
2 Planar Dynamical Systems
2.1 Introduction
2.2 Linearization About Equilibria of Second-Order Nonlinear Systems
2.2.1 Linear Systems in the Plane
2.2.2 Phase Portraits near Hyperbolic Equilibria
2.3 Closed Orbits of Planar Dynamical Systems
2.4 Counting Equilibria: Index Theory
2.5 Bifurcations
2.6 Bifurcation Study of Josephson Junction Equations
2.7 The Degenerate van der Pol Equation
2.8 Planar Discrete-Time Systems
2.8.1 Fixed Points and the Hartman-Grobman Theorem
2.8.2 Period N Points of Maps
2.8.3 Bifurcations of Maps
2.9 Summary
2.10 Exercises
3 Mathematical Background
3.1 Groups and Fields
3.2 Vector Spaces, Algebras, Norms, and Induced Norms
3.3 Contraction Mapping Theorems
3.3.1 Incremental Small Gain Theorem
3.4 Existence and Uniqueness Theorems for Ordinary Differential Equations
3.4.1 Dependence on Initial Conditions on Infinite Time Intervals
3.4.2 Circuit Simulation by Waveform Relaxation
3.5 Differential Equations with Discontinuities
3.6 Carleman Linearization
3.7 Degree Theory
3.8 Degree Theory and Solutions of Resistive Networks
3.9 Basics of Differential Topology
3.9.1 Smooth Manifolds and Smooth Maps
3.9.2 Tangent Spaces and Derivatives
3.9.3 Regular Values
3.9.4 Manifolds with Boundary
3.10 Summary
3.11 Exercises
4 Input-Output Analysis
4.1 Optimal Linear Approximants to Nonlinear Systems
4.1.1 Optimal Linear Approximations for Memoryless, Time-Invariant Nonlinearities
4.1.2 Optimal Linear Approximations for Dynamic Nonlinearities: Oscillations in Feedback Loops
4.1.3 Justification of the Describing Function
4.2 Input-Output Stability.
4.3 Applications of the Small Gain Theorems
……
5 Lyapunov Stability THeory
6 Applications of Lyapunov THeory
7 Dynamical Systems and Bifurcations
8 Basics of Differential Geometry
9 Linearization by State Feedback
10 Design Examples Using Linearization
11 Geometric Nonlinear Control
12 Exterior Differential Systems in Control
13 New Vistas: Multi-Agent Hybrid Systems
References
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)