注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)力學(xué)一致雙曲性之外的動力學(xué):一種整體的(影印版)

一致雙曲性之外的動力學(xué):一種整體的(影印版)

一致雙曲性之外的動力學(xué):一種整體的(影印版)

定 價:¥68.00

作 者: (法)博納蒂
出版社: 科學(xué)出版社
叢編項: 國外數(shù)學(xué)名著系列
標(biāo) 簽: 科學(xué)與自然 理論力學(xué)(一般力學(xué))

ISBN: 9787030182906 出版時間: 2007-01-01 包裝: 平裝
開本: 16 頁數(shù): 384 字數(shù):  

內(nèi)容簡介

  廣義而言,動力學(xué)的目的是描述由“極少的”演化規(guī)律所決定的系統(tǒng)(如微分方程或映射)的長期動態(tài)。20世紀60年代早期,Steve Smale引入一臻雙曲性概念,統(tǒng)一了動力系統(tǒng)理論的重要結(jié)果,導(dǎo)致了關(guān)于一大類系統(tǒng)的一個非常成功的理論:一致雙曲系統(tǒng)理論。一致雙曲系統(tǒng)的動態(tài)非常復(fù)雜,然而,無論是從幾何角度還是統(tǒng)計層面,它們都已得到很好的理解。在過去的20年中,動力系統(tǒng)理論發(fā)生了另一個巨大變化:研究人員試圖建立一個統(tǒng)一理論,適合“大多數(shù)”動力系統(tǒng);在該理論下,一致雙曲情形的盡可能多的結(jié)論依然成立。本書嘗試由最新進展出發(fā),統(tǒng)一地展望動力系統(tǒng)理論,提出一些公共開問題,指出未來的可能發(fā)展方向。本書面向希望快速而廣泛地了解動力學(xué)這一方面發(fā)展的初學(xué)者及研究人員,深度不等地討論了主要的思想、方法以及結(jié)果,給出了相關(guān)參考文獻,讀者可以從文獻中獲知詳細細節(jié)和補充信息。本書共12章,各章保持相當(dāng)?shù)莫毩⑿裕苑奖阕x者閱讀特定主題。書后五個附錄涵蓋了一些重要的補充材料。

作者簡介

暫缺《一致雙曲性之外的動力學(xué):一種整體的(影印版)》作者簡介

圖書目錄

1 Hyperbolicity and Beyond
 1.1 Spectral decomposition
 1.2 Structural stability
 1.3 Sinai-Ruelle-Bowen theory
 1.4 Heterodimensional cycles
 1.5 Homoclinic tangencies
 1.6 Attractors and physical measures
 1.7 A conjecture on finitude of attractors
2 One-Dimensional Dynamics
 2.1 Hyperbolicity
 2.2 Non-critical behavior
 2.3 Density of hyperbolicity
 2.4 Chaotic behavior
 2.5 The renormalization theorem
 2.6 Statistical properties of unimodal maps
3 Homoclinic Tangencies
 3.1 Homoclinic tangencies and Cantor sets
 3.2 Persistent tangencies,coexistence of  attractors
 3.3 Hyperbolicity and fractal dimensions
 3.4 Stable intersections of regular Cantor sets
 3.5 Homoclinic tangencies in higher dimensions
 3.6 On the boundary of hyperbolic systems
4 Henon like Dynamics
 4.1  Henon-like families
 4.2  Abundance of strange attractors
 4.3 Sinai-Ruelle-Bowen measures
 4.4 Decay of correlations and central limit theorem
 4.5 Stochastic stability
 4.6 Chaotic dynamics near homoclinic tangencies
5 Non-Critical Dynamics and Hyperbolicity
 5.1 Non-critical surface dynamics
 5.2 Domination implies almost hyperbolicity
 5.3 Homoclinic tangencies vs. Axiom A
 5.4 Entropy and homoclinic points on surfaces
 5.5 Non-critical behavior in higher dimensions
6 Heterodimensional Cycles and Blenders
 6.1 Heterodimensionalcycles
 6.2 Blenders
 6.3 Partially hyperbolic cycles
7 Robust Transitivity
 7.1 Examples of robust transitivity
 7.2 Consequences of robust transitivity
 7.3 Invariant foliation
8 Stable Ergodieity
 8.1 Examples of stably ergodic systems
 8.2 Accessibility and ergodicity
 8.3 The theorem of Pugh-Shub
 8.4 Stable ergodicity of torus automorphisms
 8.5 Stable ergodicity and robust transitivity
 8.6 Lyapunov exponents and stable ergodicity
9 Robust Singular Dynamics
 9.1 Singular invariant sets
 9.2 Singular cycles
 9.3 Robust transitivity and singular hyperbolicity
 9.4 Consequences of singular hyperbolicity
 9.5 Singular Axiom A flows
 9.6 Persistent singular attractors
10 Generic Diffeomorphisms
 10.1 A quick overview
 10.2 Notions of recurrence
 10.3 Decomposing the dynamics to elementary pieces
 10.4 Homoclinic classes and elementary pieces
 10.5 Wild behavior vs. tame behavior
 10.6 A sample of wild dynamics
11 SRB Measures and Gibbs States
 11.1 SRB measures for certain non-hyperbolic maps
 11.2 Gibbs u-states for EuEcs systems
 11.3 SRB measures for dominated dynamics
 11.4 Generic existence of SRB measures
 11.5 Extensions and related results
12 Lyapunov Exponents
 12.1 Continuity of Lyapunov exponents
 12.2 A dichotomy for conservative systems
 12.3 Deterministic products of matrices
 12.4 Abundance of non-zero exponents
 12.5 Looking for non-zero Lyapunov exponents
 12.6 Hyperbolic measures are exact dimensiona
A Perturbation Lemmas
 A.1 Closing lemmas
 A.2 Ergodic closing lemma
 A.3 Connecting lemmas
 A.4 Some ideas of the proofs
 A.5 A connecting lemma for pseudo-orbits
 A.6 Realizing perturbations of the derivative
B NormalHyperbolicity and Foliations
 B.1 Dominated splittings
 B.2 Invariant foliations
 B.3 Linear Poincare flows
C Non-Uniformly Hyperbolic Theory
 C.1 The linear theory
 C.2 Stable manifold theorem
 C.3 Absolute continuity of foliations
 C.4 Conditional measures along invariant foliations
 C.5 Local product structure
 C.6 The disintegration theorem
D Random Perturbations
 D.1 Markov chain model
 D.2 Iterations of random maps
 D.3 Stochastic stability
 D.4 Realizing Markov chains by random maps
 D.5 Shadowing versus stochastic stability
 D.6 Random perturbations of flows
E Decay of Correlations
 E.1 Transfer operators: spectral gap property
 E.2 Expanding and piecewise expanding maps
 E.3 Invariant cones and projective metrics
 E.4 Uniformly hyperbolic diffeomorphisms
 E.5 Uniformly hyperbolic flows
 E.6 Non-uniformly hyperbolic systems
 E.7 Non-exponential convergence
 E.8 Maps with neutral fixed points
 E.9 Central limit theorem
Conclusion
References
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號