注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)物理學(xué)平衡統(tǒng)計(jì)物理學(xué)(第二版 英文影印版)

平衡統(tǒng)計(jì)物理學(xué)(第二版 英文影印版)

平衡統(tǒng)計(jì)物理學(xué)(第二版 英文影印版)

定 價(jià):¥50.00

作 者: (加)普里斯科、(加)伯格森
出版社: 復(fù)旦大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 物理實(shí)驗(yàn)

ISBN: 9787309052008 出版時(shí)間: 2006-11-01 包裝: 平裝
開本: 32 頁數(shù): 520 字?jǐn)?shù):  

內(nèi)容簡介

  這是針對從事物理、化學(xué)和材料科學(xué)的研究生和高年級本科生的專業(yè)需求編寫的統(tǒng)計(jì)物理教材。早在1980年,作者們發(fā)現(xiàn)由K.G.Wilson率先將重整化群方法引入臨界現(xiàn)象并取得成功之后,凝聚態(tài)物理的研究進(jìn)入了飛速發(fā)展的黃金時(shí)代,因此認(rèn)為研究生的早期教學(xué)工作應(yīng)當(dāng)反映這方面的動(dòng)態(tài)。為此于1989年率先由Prentice-Hall出版公司出版了反映這方面特色的《平衡統(tǒng)計(jì)物理學(xué)》,1994年經(jīng)過修訂,轉(zhuǎn)到World Scientific出版了本書第一版,1999年出版了第二版,現(xiàn)在呈現(xiàn)在讀者面前的是2003年的版本。全書共分11章,前兩章分別復(fù)習(xí)熱力學(xué)和統(tǒng)計(jì)系統(tǒng)理論,這部分內(nèi)容既是讀者學(xué)習(xí)后面各章的基礎(chǔ),也是為了本科期間沒有接觸過熱力學(xué)和統(tǒng)計(jì)物理的學(xué)生設(shè)計(jì)的。兩章都有大量習(xí)題,可以幫助讀者加深理解。后面各章分別講述平均場和朗道理論、致密氣體和液體、臨界現(xiàn)象的二維伊辛模型、級數(shù)展開、標(biāo)度律、重整化群方法等。第七章介紹動(dòng)力學(xué)模擬方法。八、九、十、十一各章介紹統(tǒng)計(jì)物理最活躍的應(yīng)用領(lǐng)域:聚合物和薄膜、量子流體、線性響應(yīng)理論、無序系統(tǒng)等。由于本書的后半部分涉及二次量子化的概念,因此在附錄中補(bǔ)充了占有數(shù)表象的內(nèi)容。本書每章都有不少的習(xí)題,越到后面各章,習(xí)題的難度越來越有挑戰(zhàn)性。作者們還專門編寫了《習(xí)題解答》,有需要的教師或讀者可通過互聯(lián)網(wǎng)(http://www.worldscibooks.com/physics/4485.html)查找。

作者簡介

  Michael Plischke加拿大Simon Fraser大學(xué)物理系主任,教授。芝加哥Loyola大學(xué)物理學(xué)學(xué)士,Yale大學(xué)物理學(xué)碩士,Yeshiva大學(xué)物理學(xué)博士,長期從事凝聚態(tài)物理研究,并給碩士生和本科生講授統(tǒng)計(jì)力學(xué)。Equilibrium Statistical Physics和Physics and Chemistry of Disordered Systems等是其代表性的著作。Birger Bergersen 加拿大British Columbia大學(xué)物理和天文系榮譽(yù)退休教授。給碩士生和本科生講授熱力學(xué)和統(tǒng)計(jì)物理長達(dá)30多年,Equilibrium Statistical Physics一書就是其重要的學(xué)術(shù)著作。

圖書目錄

Contents
Preface to the First Edition
Preface to the Second Edition
1 Review of Thermodynamics
 1.1 State Variables and Equations of State
 1.2 Laws of Thermodynamics
 1.2.1 First law
 1.2.2 Second law
 1.3 Thermodynamic Potentials
 1.4 Gibbs-Duhem and Maxwell Relations
 1.5 Response Functions
 1.6 Conditions for Equilibrium and Stability
 1.7 Thermodynamics of Phase Transitions
 1.8 Problems
2 Statistical Ensembles
 2.1 Isolated Systems: MicrocanonicalEnsemble
 2.2 Systems at Fixed Temperature: Canonical Ensemble
 2.3 Grand Canonical Ensemble
 2.4 Quantum Statistics
 2.4.1 Harmonic oscillator
 2.4.2 Noninteracting fermions
 2.4.3 Noninteracting bosons
 2.4.4 Density matrix
 2.5 Maximum Entropy Principle
 2.6 Thermodynamic Variational Principles
 2.7 Problems
3 Mean Field and Landau Theory
 3.1 Mean Field Theory of the Ising Model
 3.2 Bragg-Williams Approximation
 3.3 Order Disorder Transition
 3.4 Bethe Approximation
 3.5 Critical Behavior of Mean Field Theories
 3.6 Ising Chain: Exact Solution
 3.7 Landau Theory of Phase Transitions
 3.8 Example of Symmetry Considerations: Maier-Saupe Model
 3.9 Landau Theory of Tricritical Points
 3.10 Landau-Ginzburg Theory for Fluctuations
 3.11 Multicomponent Order Parameters: n-Vector Model
 3.12 Mean Field Theory of Fluids: Van der Waals Approach
 3.13 Problems
4 Dense Gases and Liquids
 4.1 Virial Expansion
 4.2 Distribution Functions
  4.2.1 Pair correlation function
  4.2.2 BBGKY hierarchy
  4.2.3 Ornstein-Zernike equation
 4.3 Perturbation Theory
 4.4 Inhomogeneous Liquids
  4.4.1 Liquid-vapor interface
  4.4.2 Capillary waves
 4.5 Density-Functional Theory
  4.5.1 Functional differentiation
  4.5.2 Free-energy functionals and correlation functions
  4.5.3 Applications
 4.6 Problems
5 Critical Phenomena I
 5.1 Ising Model in Two Dimensions
  5.1.1 Transfer matrix
  5.1.2 Transformation to an interacting fermion problem
  5.1.3 Calculation of eigenvalues
  5.1.4 Thermodynamic functions
  5.1.5 Concluding remarks
 5.2 Series Expansions
  5.2.1 High-temperature expansions
  5.2.2 Low-temperature expansions
  5.2.3 Analysis of series
 5.3 Scaling
  5.3.1 Thermodynamic considerations
  5.3.2 Scaling hypothesis
  5.3.3 Kadanoff block spins
 5.4 Finite-Size Scaling
 5.5 Universality
 5.6 Kosterlitz-Thouless Transition
 5.7 Problems
6 Critical Phenomena II: The Renormalization Group
 6.1 The Ising Chain Revisited
 6.2 Fixed Points
 6.3 Position Space Renormalization: Cumulant Method
  6.3.1 First-order approximation
  6.3.2 Second-order approximation
 6.4 Other Position Space RenormalizationGroup Methods
  6.4.1 Finite lattice methods
  6.4.2 Adsorbed monolayers: Ising antiferromagnet
  6.4.3 Monte Carlo renormalization
 6.5 Phenomenological Renormalization Group
 6.6 The e-Expansion
  6.6.1 The Gaussian model
  6.6.2 The S4 model
  6.6.3 Critical exponents to order ε
  6.6.4 Conclusion
 6.7 Problems
7 Simulations
 7.1 Molecular Dynamics
 7.2 Monte Carlo Method
  7.2.1 Markov processes
  7.2.2 Detailed balance and the Metropolis algorithm
  7.2.3 Histogram methods
 7.3 Data Analysis
  7.3.1 Fluctuations
  7.3.2 Error estimates
  7.3.3 Extrapolation to the thermodynamic limit
 7.4 The Hopfield Model of Neural Nets
 7.5 Simulated Quenching and Annealing
 7.6 Problems
8 Polymers and Membranes
 8.1 Linear Polymers
  8.1.1 The freely jointed chain
  8.1.2 The Gaussian chain
 8.2 Excluded Volume Effects: Flory Theory
 8.3 Polymers and the n-Vector Model
 8.4 Dense Polymer Solutions
 8.5 Membranes
  8.5.1 Phantom membranes
  8.5.2 Self-avoiding membranes
  8.5.3 Liquid membranes
 8.6 Problems
9 Quantum Fluids
 9.1 Bose Condensation
 9.2 Superfluidity
  9.2.1 Qualitative features of superfluidity
  9.2.2 Bogoliubov theory of the aHe excitation spectrum
 9.3 Superconductivity
  9.3.1 Cooper problem
  9.3.2 BCS ground state
  9.3.3 Finite-temperature BCS theory
  9.3.4 Landau-Ginzburg theory of superconductivity
 9.4 Problems
10 Linear Response Theory
 10.1 Exact Results 378
  10.1.1 Generalized susceptibility and the structure factor
  10.1.2 Thermodynamic properties
  10.1.3 Sum rules and inequalities
 10.2 Mean Field Response
  10.2.1 Dielectric function of the electron gas
  10.2.2 Weakly interacting Bose gas
  10.2.3 Excitations of the Heisenberg ferromagnet
  10.2.4 Screening and plasmons
  10.2.5 Exchange and correlation energy
  10.2.6 Phonons in metals
 10.3 Entropy Production, the Kubo Formula, and the Onsager Relations for Transport Coefficients
  10.3.1 Kubo formula
  10.3.2 Entropy production and generalized currents and forces
  10.3.3 Microscopic reversibility: Onsager relations
 10.4 The Boltzmann Equation
  10.4.1 Fields, drift and collisions
  10.4.2 DC conductivity of a metal
  10.4.3 Thermal conductivity and thermoelectric effects
 10.5 Problems
11 Disordered Systems
 11.1 Single-Particle States in Disordered Systems
  11.1.1 Electron states in one dimension
  11.1.2 Transfer matrix
  11.1.3 Localization in three dimensions
  11.1.4 Density of states
 11.2 Percolation
  11.2.1 Scaling theory of percolation
  11.2.2 Series expansions and renormalization group
  11.2.3 Conclusion
 11.3 Phase Transitions in Disordered Materials
  11.3.1 Statistical formalism and the replica trick
  11.3.2 Nature of phase transitions
 11.4 Strongly Disordered Systems
  11.4.1 Molecular glasses
  11.4.2 Spin glasses
  11.4.3 Sherrington-Kirkpatrick model
 11.5 Problems
Appendix: Occupation Number Representation
Bibliography
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)