Michael Plischke加拿大Simon Fraser大學(xué)物理系主任,教授。芝加哥Loyola大學(xué)物理學(xué)學(xué)士,Yale大學(xué)物理學(xué)碩士,Yeshiva大學(xué)物理學(xué)博士,長期從事凝聚態(tài)物理研究,并給碩士生和本科生講授統(tǒng)計(jì)力學(xué)。Equilibrium Statistical Physics和Physics and Chemistry of Disordered Systems等是其代表性的著作。Birger Bergersen 加拿大British Columbia大學(xué)物理和天文系榮譽(yù)退休教授。給碩士生和本科生講授熱力學(xué)和統(tǒng)計(jì)物理長達(dá)30多年,Equilibrium Statistical Physics一書就是其重要的學(xué)術(shù)著作。
圖書目錄
Contents Preface to the First Edition Preface to the Second Edition 1 Review of Thermodynamics 1.1 State Variables and Equations of State 1.2 Laws of Thermodynamics 1.2.1 First law 1.2.2 Second law 1.3 Thermodynamic Potentials 1.4 Gibbs-Duhem and Maxwell Relations 1.5 Response Functions 1.6 Conditions for Equilibrium and Stability 1.7 Thermodynamics of Phase Transitions 1.8 Problems 2 Statistical Ensembles 2.1 Isolated Systems: MicrocanonicalEnsemble 2.2 Systems at Fixed Temperature: Canonical Ensemble 2.3 Grand Canonical Ensemble 2.4 Quantum Statistics 2.4.1 Harmonic oscillator 2.4.2 Noninteracting fermions 2.4.3 Noninteracting bosons 2.4.4 Density matrix 2.5 Maximum Entropy Principle 2.6 Thermodynamic Variational Principles 2.7 Problems 3 Mean Field and Landau Theory 3.1 Mean Field Theory of the Ising Model 3.2 Bragg-Williams Approximation 3.3 Order Disorder Transition 3.4 Bethe Approximation 3.5 Critical Behavior of Mean Field Theories 3.6 Ising Chain: Exact Solution 3.7 Landau Theory of Phase Transitions 3.8 Example of Symmetry Considerations: Maier-Saupe Model 3.9 Landau Theory of Tricritical Points 3.10 Landau-Ginzburg Theory for Fluctuations 3.11 Multicomponent Order Parameters: n-Vector Model 3.12 Mean Field Theory of Fluids: Van der Waals Approach 3.13 Problems 4 Dense Gases and Liquids 4.1 Virial Expansion 4.2 Distribution Functions 4.2.1 Pair correlation function 4.2.2 BBGKY hierarchy 4.2.3 Ornstein-Zernike equation 4.3 Perturbation Theory 4.4 Inhomogeneous Liquids 4.4.1 Liquid-vapor interface 4.4.2 Capillary waves 4.5 Density-Functional Theory 4.5.1 Functional differentiation 4.5.2 Free-energy functionals and correlation functions 4.5.3 Applications 4.6 Problems 5 Critical Phenomena I 5.1 Ising Model in Two Dimensions 5.1.1 Transfer matrix 5.1.2 Transformation to an interacting fermion problem 5.1.3 Calculation of eigenvalues 5.1.4 Thermodynamic functions 5.1.5 Concluding remarks 5.2 Series Expansions 5.2.1 High-temperature expansions 5.2.2 Low-temperature expansions 5.2.3 Analysis of series 5.3 Scaling 5.3.1 Thermodynamic considerations 5.3.2 Scaling hypothesis 5.3.3 Kadanoff block spins 5.4 Finite-Size Scaling 5.5 Universality 5.6 Kosterlitz-Thouless Transition 5.7 Problems 6 Critical Phenomena II: The Renormalization Group 6.1 The Ising Chain Revisited 6.2 Fixed Points 6.3 Position Space Renormalization: Cumulant Method 6.3.1 First-order approximation 6.3.2 Second-order approximation 6.4 Other Position Space RenormalizationGroup Methods 6.4.1 Finite lattice methods 6.4.2 Adsorbed monolayers: Ising antiferromagnet 6.4.3 Monte Carlo renormalization 6.5 Phenomenological Renormalization Group 6.6 The e-Expansion 6.6.1 The Gaussian model 6.6.2 The S4 model 6.6.3 Critical exponents to order ε 6.6.4 Conclusion 6.7 Problems 7 Simulations 7.1 Molecular Dynamics 7.2 Monte Carlo Method 7.2.1 Markov processes 7.2.2 Detailed balance and the Metropolis algorithm 7.2.3 Histogram methods 7.3 Data Analysis 7.3.1 Fluctuations 7.3.2 Error estimates 7.3.3 Extrapolation to the thermodynamic limit 7.4 The Hopfield Model of Neural Nets 7.5 Simulated Quenching and Annealing 7.6 Problems 8 Polymers and Membranes 8.1 Linear Polymers 8.1.1 The freely jointed chain 8.1.2 The Gaussian chain 8.2 Excluded Volume Effects: Flory Theory 8.3 Polymers and the n-Vector Model 8.4 Dense Polymer Solutions 8.5 Membranes 8.5.1 Phantom membranes 8.5.2 Self-avoiding membranes 8.5.3 Liquid membranes 8.6 Problems 9 Quantum Fluids 9.1 Bose Condensation 9.2 Superfluidity 9.2.1 Qualitative features of superfluidity 9.2.2 Bogoliubov theory of the aHe excitation spectrum 9.3 Superconductivity 9.3.1 Cooper problem 9.3.2 BCS ground state 9.3.3 Finite-temperature BCS theory 9.3.4 Landau-Ginzburg theory of superconductivity 9.4 Problems 10 Linear Response Theory 10.1 Exact Results 378 10.1.1 Generalized susceptibility and the structure factor 10.1.2 Thermodynamic properties 10.1.3 Sum rules and inequalities 10.2 Mean Field Response 10.2.1 Dielectric function of the electron gas 10.2.2 Weakly interacting Bose gas 10.2.3 Excitations of the Heisenberg ferromagnet 10.2.4 Screening and plasmons 10.2.5 Exchange and correlation energy 10.2.6 Phonons in metals 10.3 Entropy Production, the Kubo Formula, and the Onsager Relations for Transport Coefficients 10.3.1 Kubo formula 10.3.2 Entropy production and generalized currents and forces 10.3.3 Microscopic reversibility: Onsager relations 10.4 The Boltzmann Equation 10.4.1 Fields, drift and collisions 10.4.2 DC conductivity of a metal 10.4.3 Thermal conductivity and thermoelectric effects 10.5 Problems 11 Disordered Systems 11.1 Single-Particle States in Disordered Systems 11.1.1 Electron states in one dimension 11.1.2 Transfer matrix 11.1.3 Localization in three dimensions 11.1.4 Density of states 11.2 Percolation 11.2.1 Scaling theory of percolation 11.2.2 Series expansions and renormalization group 11.2.3 Conclusion 11.3 Phase Transitions in Disordered Materials 11.3.1 Statistical formalism and the replica trick 11.3.2 Nature of phase transitions 11.4 Strongly Disordered Systems 11.4.1 Molecular glasses 11.4.2 Spin glasses 11.4.3 Sherrington-Kirkpatrick model 11.5 Problems Appendix: Occupation Number Representation Bibliography Index