注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書教育/教材/教輔考試計算機考試實分析和概率論(英文版 第2版)

實分析和概率論(英文版 第2版)

實分析和概率論(英文版 第2版)

定 價:¥69.00

作 者: 達德利
出版社: 機械工業(yè)出版社
叢編項: 經(jīng)典原版書庫
標(biāo) 簽: 復(fù)分析

ISBN: 9787111193487 出版時間: 2006-07-01 包裝: 簡裝本
開本: 16開 頁數(shù): 555 字數(shù):  

內(nèi)容簡介

  本書在兩個方面獲得了極佳的成功。一是它是一本全面、新穎的實分析教程,二是它是一本數(shù)學(xué)理論完整和自成體系的概率論教程。本書無疑給出了一種嚴謹和完整的新標(biāo)準(zhǔn)。 ——美國數(shù)學(xué)會公報 這是一本非凡的著作。在教學(xué)和參考兩個方面本書將成為一本標(biāo)準(zhǔn)化教材,它全面地介紹了實分析的必備知識,且證明貫穿全書。一些主題和證明極少在其他教科書中見到。 ——愛丁堡數(shù)學(xué)會學(xué)報 嚴謹,精深,新穎,這是一本適用于數(shù)學(xué)專業(yè)研究生的教材。 ——ISI的簡短書評 這是一本廣受稱贊的教科書,清晰地講解了現(xiàn)代概率論以及度量空間與概率測度之間的相互作用。本書分兩部分,第一部分介紹了實分析的內(nèi)容,包括基本集合論、一般拓撲學(xué)、測度論、積分法、巴拿赫空間和拓撲空間中的泛函分析導(dǎo)論、凸集和函數(shù)、拓撲空間上的測度等。第二部分介紹了基于測度論的概率方面的內(nèi)容,包括大數(shù)律、遍歷定理、中心極限定理、條件期望、鞅收斂等。另外,隨機過程一章 (第12章) 還介紹了布朗運動和布朗橋。 與前版相比,本版內(nèi)容更完善,一開始就介紹了實數(shù)系的基礎(chǔ)和泛代數(shù)中的一致逼近的斯通-魏爾斯特拉斯定理;修訂和改進了幾節(jié)的內(nèi)容,擴充了大量歷史注記;增加了很多新的習(xí)題,以及對一些習(xí)題的解答的提示。

作者簡介

  502R.cM.cDudley,1麻省理工學(xué)院數(shù)學(xué)教授.a除本書外,1他還著有《DifferentiabilitycofcSixcOperatorsconcNonsmoothcFunctionscandcp-Variation》.c《UniformcCentralcLimitcTheorems》等書.a...1a1c1ac111c111a1a1

圖書目錄

Preface to the Cambridge Edition
1 Foundations; Set Theory
1.1 Definitions for Set Theory and the Real Number System
1.2 Relations and Orderings
* 1.3 Transfinite Induction and Recursion
1.4 Cardinality
1.5 The Axiom of Choice and Its Equivalents
2 General Topology
2.1 Topologies, Metrics, and Continuity
2.2 Compactness and Product Topologies
2.3 Complete and Compact Metric Spaces
2.4 Some Metrics for Function Spaces
2.5 Completion and Completeness of Metric Spaces
*2.6 Extension of Continuous Functions
*2.7 Uniformities and Uniform Spaces
*2.8 Compactification
3 Measures
3.1 Introduction to Measures
3.2 Semirings and Rings
3.3 Completion of Measures
3.4 Lebesgue Measure and Nonmeasurable Sets
*3.5 Atomic and Nonatomic Measures
4 Integration
4.1 Simple Functions
*4.2 Measurability
4.3 Convergence Theorems for Integrals
4.4 Product Measures
*4.5 Daniell-Stone Integrals
5 Lp Spaces; Introduction to Functional Analysis
5.1 Inequalities for Integrals
5.2 Norms and Completeness of LP
5.3 Hilbert Spaces
5.40rthonormal Sets and Bases
5.5 LinearForms on Hilbert Spaces, Inclusions of LP Spaces,
and Relations Between Two Measures
5.6 Signed Measures
6 Convex Sets and Duality of Normed Spaces
6.1 Lipschitz, Continuous, and Bounded Functionals
6.2 Convex Sets and Their Separation
6.3 Convex Functions
*6.4 Duality of Lp Spaces
6.5 Uniform Boundedness and Closed Graphs
*6.6 The Bmnn-Minkowski Inequality
7 Measure, Topology, and Differentiation,
7.1 Baire and Borel o-Algebras and Regularity of Measures
*7.2 Lebesgues Differentiation Theorems
*7.3 The Regularity Extension
*7.4 The Dual of C(K) and Fourier Series
*7.5 Almost Uniform Convergence and Lusins Theorem
8 Introduction to Probability Theory
8.1 Basic Definitions
8.2 Infinite Products of Probability Spaces
8.3 Laws of Large Numbers
*8.4 Ergodic Theorems
9 Convergence of Laws and Central Limit Theorems
9.1 Distribution Functions and Densities
9.2 Convergence of Random Variables
9.3 Convergence of Laws
9.4 Characteristic Functions
9.5 Uniqueness of Characteristic Functions
and a Central Limit Theorem
9.6 Triangular Arrays and Lindebergs Theorem
9.7 Sums of Independent Real Random Variables
*9.8 The Levy Continuity Theorem; Infinitely Divisible
and Stable Laws
10 Conditional Expectations and Martingales
10.1 Conditional Expectations
10.2 Regular Conditional Probabilities and Jensens
Inequality
10.3 Martingales
10.4 Optional Stopping and Uniform Integrability
10.5 Convergence of Martingales and Submartingales
* 10.6 Reversed Martingales and Submartingales
* 10.7 Subadditive and Superadditive Ergodic Theorems
11 Convergence of Laws on Separable Metric Spaces
11.1 Laws and Their Convergence
11.2 Lipschitz Functions
11.3 Metrics for Convergence of Laws
11.4 Convergence of Empirical Measures
11.5 Tightness and Uniform Tightness
*11.6 Strassens Theorem: Nearby Variables
With Nearby Laws
* 11.7 A Uniformity for Laws and Almost Surely Converging
Realizations of Converging Laws
* 11.8 Kantorovich-Rubinstein Theorems
* 11.9 U-Statistics
12 Stochastic Processes
12.1 Existence of Processes and Brownian Motion
12.2 The Strong Markov Property of Brownian Motion
12.3 Reflection Principles, The Brownian Bridge,
and Laws of Suprema
12.4 Laws of Brownian Motion at Markov Times:
Skorohod Imbedding
12.5 Laws of the Iterated Logarithm
13 Measurability: Borel Isomorphism and Analytic Sets
* 13.1 Borel Isomorphism
* 13.2 Analytic Sets
Appendix A Axiomatic Set Theory
A.1 Mathematical Logic
A.2 Axioms for Set Theory
A.3 Ordinals and Cardinals
A.4 From Sets to Numbers
Appendix B Complex Numbers, Vector Spaces,
and Taylors Theorem with Remainder
Appendix C The Problem of Measure
Appendix D Rearranging Sums of Nonnegative Terms
Appendix E Pathologies of Compact Nonmetric Spaces
Author Index
Subject Index
Notation Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號