注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計算機/網(wǎng)絡(luò)計算機組織與體系結(jié)構(gòu)射頻電路和射頻集成電路設(shè)計中的關(guān)鍵課題

射頻電路和射頻集成電路設(shè)計中的關(guān)鍵課題

射頻電路和射頻集成電路設(shè)計中的關(guān)鍵課題

定 價:¥40.10

作 者: RICHARD CHI-HSI LI
出版社: 高等教育出版社
叢編項: 英文
標 簽: 電子電路 基本電子電路 微電子學(xué)、集成電路(IC) 電子與通信

ISBN: 9787040159585 出版時間: 2005-02-01 包裝: 簡裝本
開本: 16開 頁數(shù): 208 字數(shù):  

內(nèi)容簡介

  《射頻電路和射頻集成電路設(shè)計中的關(guān)鍵課題》總共十二章,涵蓋六個關(guān)鍵性的課題:1)阻抗匹配;2)射頻接地;3)單端和差分線路;4)誤差分析;5)展望射頻集成電路設(shè)計;6)射頻電路的基本參數(shù)和指標。射頻電路設(shè)計中最大的特點是阻抗匹配。沒有阻抗匹配的電路設(shè)計就不是射頻電路設(shè)計。阻抗匹配也是射頻電路設(shè)計和數(shù)碼電路設(shè)計的主要差別之處。由于它的重要性, 《射頻電路和射頻集成電路設(shè)計中的關(guān)鍵課題》的第一章和第二章比較詳細地討論了這一關(guān)鍵性課題。其余的章節(jié)是在射頻電路設(shè)計中最需要的基本知識,包括:什么是射頻電路的基本參數(shù)?為什么目前在射頻和射頻集成電路設(shè)計中出現(xiàn)從單端轉(zhuǎn)化為差分結(jié)構(gòu)的趨勢?射頻集成電路設(shè)計的主要難題是什么?如何克服這些障礙? 在射頻電路設(shè)計中,射頻電路單元性能的好壞往往取決于射頻接地的成功與否。射頻電路的誤差分析則關(guān)系到產(chǎn)品合格率,而產(chǎn)品合格率是一間公司的生命線。《射頻電路和射頻集成電路設(shè)計中的關(guān)鍵課題》有兩個特色。首先,在已出版了的大多數(shù)射頻電路和射頻集成電路設(shè)計的書中,其內(nèi)容是討論一個個射頻電路單元,譬如,低噪聲放大器,混頻器,功率放大器, 壓控振蕩器,頻率綜合器。因此,可以把它們歸類為縱向論述的書?!渡漕l電路和射頻集成電路設(shè)計中的關(guān)鍵課題》則不是討論一個個射頻電路單元, 而是著重論述和強調(diào)在射頻電路和射集成電路設(shè)計中共同的關(guān)鍵性課題,因此,這是一本橫向論述的書。其次,盡管有些內(nèi)容是引自出版了的書刊和文獻。在本講座中不少內(nèi)容是引自《射頻電路和射頻集成電路設(shè)計中的關(guān)鍵課題》作者的設(shè)計和工作報告?!渡漕l電路和射頻集成電路設(shè)計中的關(guān)鍵課題》可作為以下讀者在射頻電路和射頻集成電路的設(shè)計,研究和學(xué)習(xí)中的參考書:射頻電路和射頻集成電路設(shè)計工程師,測試工程師,系統(tǒng)工程師和經(jīng)理;射頻電路和射頻集成電路的有關(guān)研究人員;射頻電路和射頻集成電路有關(guān)專業(yè)的大學(xué)本科生,研究生和教授。

作者簡介

  Richard Chi-Hsi Li,male, was born in NanAn,QuanZhou ,F(xiàn)ujian,China .He graduated in the Physics Department of FuDan Unversity,Shanghai,China in 1985.From 1958 to 1973 .he and been working for the Institute of Geophysics ,Chineseacademy and the University of China Science and Technology,Beijing, China.

圖書目錄

Chapter 1 Importance of Impedance Matching 17

1.1 Difference between RF and Digital Circuit Design 17
1.1.1 Case # 1: Digital Circuits at Low Data Rate 18
1.1.2 Case # 2: Digital Circuits at High Data Rate 21

1.2 Significance of Impedance Matching 23
1.2.1 Power Transportation from a Source to a Load 23
1.2.2 Maximizing of Power Transportation without Phase Shift 24
1.2.3 Conjugate Impedance Matching and Voltage Reflection Coefficient 26
1.2.4 Impedance Matching Network 27

1.3 Problems due to Unmatched Status of Impedance 30
1.3.1 General Expression of Power Transportation 30
1.3.2 Power Instability and Additional Power Loss 33
1.3.3 Additional Distortion and Quasi-Noise 35
1.3.4 Power Measurement 38
1.3.5 Power Transportation and Voltage Transportation 40
1.3.6 Burning of a Transistor 44

References 45



Chapter 2 Impedance Matching 46

2.1 Impedance Measured by Small Signal 46
2.1.1 Impedance Measured by S Parameter Measurement 46
2.1.2 The Smith Chart: Impedance and Admittance Coordination 47
2.1.3 Accuracy of Smith Chart 51
2.1.4 Relationship between the Impedance in Series and in Parallel 52

2.2 Impedance Measured by Large Signal 55

2.3 Impedance Matching 58
2.3.1 One Part Matching Network 58
2.3.2 Recognition of Regions in a Smith Chart 60
2.3.3 Two Parts Matching Network 61
2.3.4 Two Parts Upward and Downward Impedance Transformer 71
2.3.5 Three Parts Matching Network and Impedance Transformer 75
2.3.5.1 Topology Limitation of Two Parts Matching Network 75
2.3.5.2 Π Type Matching Network 77
2.3.5.3 T Type Matching Network 83

2.4 Some Useful Schemes for Impedance Matching 89
2.4.1 Designs and Tests when ZL is not 50 Ω 89
2.4.2 Conversion between “T” and “Π” Type Matching Network 90
2.4.3 Parts in a Matching Network 92
2.4.4 Impedance Matching between Power Transportation Units 93
2.4.5 Impedance Matching for a Mixer 94

References 95



Chapter 3 RF Grounding 97

3.1 A True Story 97
3.2 Three Components for RF Grounding 99
3.2.1 “Zero” Capacitors 99
3.2.2 Micro Strip Line 103
3.2.3 RF Cable 108

3.3 Examples of RF grounding 110
3.3.1 Test PCB 110
3.3.1.1 Small Test PCB 111
3.3.1.1.1 Basic Types of Test PCB 111
3.3.1.1.2 RF Grounding with a Rectangular Metallic Frame 115
3.3.1.1.3 An Example 116
3.3.1.2 Large Test PCB 119
3.3.1.2.1 RF Grounding by “Zero” Chip Capacitors 119
3.3.1.2.2 RF Grounding by a Runner or a Cable
with Half or Quarter Wavelength 121
3.3.2 Isolation between Input and Output in a Mixer or an Up-converter 124
3.3.3 Calibration for Network Analyzer 125
3.4 RF Grounding for Reduction of Return Current Coupling 127
3.4.1 A Circuit Built by Discrete Parts on a PCB 127
3.4.2 RFICs 130

References 134



Chapter 4 Equivalent Circuits of Passive Chip Parts 135

4.1 Modeling of Passive Chip Parts 136
4.2 Characterizing of Passive Chip Parts by Network Analyzer 138
4.3 Extraction from the Measurement by Network Analyzer 140
4.3.1 Chip Capacitor 140
4.3.2 Chip Inductor 145
4.3.3 Chip Resistor 151

4. 4 Summary 154

References 155



Chapter 5 Single-ended Stage and Differential Pair 156

5.1 Basic Single-ended Stage 156
5.1.1 General Description 156
5.1.2 Small Signal Model of a Bipolar Transistor 158
5.1.2.1 Impedance of a CE (Common Emitter) Device 160
5.1.2.2 Impedance of a CB (Common Base) Device 162
5.1.2.3 Impedance of a CC (Common Collector) Device 165
5.1.2.4 Comparison between CE, CB, and CC Device 167
5.1.3 Small Signal Model of a MOSFET 168
5.1.3.1 Impedance of a CS (Common source) Device 171
5.1.3.2 Impedance of a CG (Common gate) Device 173
5.1.3.3 Impedance of a CD (Common drain) Device 174
5.1.3.4 Comparison between CS, CG, and CD Device 174
5.2 Differential pair 176
5.2.1 DC Transfer Characteristic 176
5.2.1.1 DC Transfer Characteristic of a Bipolar Differential Pair 176
5.2.1.2 DC Transfer Characteristic of a CMOS Differential Pair 178
5.2.2 Small Signal Characteristic 179
5.2.3 Improvement of CMRR 187
5.2.4 Increase of Voltage Swing 189
5.2.5 Cancellation of Interference 190
5.2.6 Noise in a Differential Pair 192
5.3 Apparent Difference between Single-ended Stage and
Differential pair 197
5.4 DC Offset 200
5.4.1 DC Offset in a Single-ended Device 200
5.4.2 Zero DC Offset in a Pseudo-Differential Pair 202
5.4.3 Why “Zero” IF or Direct Conversion 204
5.4.4 DC Offset Cancellation 206
5.4.4.1 “Chopping” Mixer 206
5.4.4.2 DC Offset Calibration 212
5.4.4.3 Hardware Schemes 213

References 215



Chapter 6 Balun 217

6.1 Coaxial Cable Balun 217
6.2 Ring Micro Strip Line Balun 219
6.3 Transformer Balun 222
6.4 Transformer Balun Composed by Two
Stacked 2x2 Transformers 225
6.5 LC Balun 229

References 238



Chapter 7 Tolerance Analysis 239
7.1 Importance of Tolerance Analysis 239
7.2 Fundamentals of Tolerance Analysis 241
7.2.1 Tolerance and Normal Distribution 241
7.2.2 6σ, Cp, and Cpk 246
7.2.3 Yield Rate and DPU 250
7.2.4 Poisson Distribution 253
7.3 Approach to 6σ Design and Production 254
7.4 An Example: Tunable Filter Design 259
7.4.1 Description of the Tunable Filter Design 260
7.4.2 Monte-Carlo Analysis 261
7.5 Appendix: Table of the Normal Distribution 267

References 268



Chapter 8 Prospect of RFIC Design 269
8.1 History of RFIC development 269
8.2 Isolation between Blocks in an RFIC 272
8.2.1 Definition and Measurement of Isolation 272
8.2.2 Isolation Technology 273
8.3 Low Q Value of Spiral Inductor 288
8.3.1 Skin Effect 289
8.3.2 Attenuation due to Substrate 290
8.3.3 Flux Leakage 291
8.3.4 Flux Cancellation 293
8.3.5 A Possible Solution --- Negative Resistance Compensation 294
8.3.5.1 Negative Resistance Generator with a FET 298
8.3.5.2 Negative Resistance Generator with Transformer 299
8.4 Layout 300
8.4.1 Runners 300
8.4.2 Parts 306
8.4.3 Variable Parts in RFIC 308
8.4.4 Symmetry 310
8.4.5 Via 311
8.4.6 Free Space on the Die 312
8.5 Two Challenges in an RFIC or SOC Design 313
8.5.1 Isolation 313
8.5.2 High Q Inductor for IC 314

References 315



Chapter 9 Noise, Gain, and Sensitivity of a Receiver 317
9.1 Noise in a Circuit Block or a System 317
9.1.1 Noise Sources 317
9.1.1.1 Shot Noise 317
9.1.1.2 Thermal Noise 318
9.1.1.3 Flicker Noise (1/f Noise) 319
9.1.2 Definition of Noise Figure 320
9.1.3 Noise Figure in a Noisy Two Port Block 321
9.1.4 Minimum Noise Figure and Equivalent Noise Resistor 326
9.1.4.1 Noise in a MOSFET 326
9.1.4.2 Noise in a Bipolar Device 327
9.2 Gain 330
9.2.1 Definition of Power Gains 330
9.2.2 Power Gain and Voltage Gain 334
9.3 Sensitivity 335
9.3.1 Standard Noise Source 335
9.3.2 Equivalent Input Noise 336
9.3.3 Sensitivity of a Receiver 336

References 338



Chapter 10 Non-linearity and Spurious Products 339

10.1 Spurious products 339
10.1.1 Harmonics 339
10.1.2 Complicated Spurious Products 341
10.2 IP (Intercept Point) and IMR (Inter-Modulation Rejection) 344
10.3 3rd order Intercept Point and Spurious Product 347
10.4 1 dB Compression Point and IP3 351
10.5 2nd Order Intercept Point and Spurious Product 353
10.6 Distortion 355

References 356



Chapter 11 Cascaded Equations and System Analysis 358

11.1 Cascaded Equation for Power Gain 358
11.2 Cascaded Equation for Noise Figure 361
11.3 Cascaded Equation for Intercept Point 364
11.4 Application of Cascaded Equations in the System Analysis 373

References 375



Chapter 12 From Analog to Digital Communication System 376

12.1 Modulation in an Analog Communication System 376
12.2 Encoding in a Digital Communication System 381
12.2.1 NRZ (Non-Return to Zero) and Manchester Format 381
12.2.2 BPSK (Binary Phase Shift Keying) 383
12.2.3 QPSK (Quadrature Phase Shift Keying), OQPSK, MSK 385
12.2.4 FSK (Frequency Shift Keying), CPFSK 389
12.3 Decoding and Bit-Error Probability 390
12.4 Error Correction Schemes 393

References 396

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號