拉菲爾·岡薩雷斯(Rafael C. Gonzalez):佛羅里達(dá)大學(xué)電氣工程系博士學(xué)位,田納西大學(xué)電氣和計(jì)算機(jī)工程系教授,田納西大學(xué)圖像和模式分析實(shí)驗(yàn)室、機(jī)器人和計(jì)算機(jī)視覺實(shí)驗(yàn)室的創(chuàng)始人及IEEE會士。岡薩雷斯博士在模式識別、圖像處理和機(jī)器人領(lǐng)域編寫或與人合著了100多篇技術(shù)文章、兩本書和4本教材,他的書已在世界500多所大學(xué)和研究所使用。理查德·伍茲(Richard E. Woods):田納西大學(xué)電氣工程系博士學(xué)位,IEEE會員.
圖書目錄
1 Preview 1.1 Background 1.2 What's Is Digital Image Processing? 1.3 Background on MATLAB and the Image Processing Toolbox 1.4 Areas of Image Processing Covered in the Book 1.5 The Book Web Site 1.6 Notation 1.7 The MATLAB Working Environment 1.7.1 The MATLAB Desktop 1.7.2 Using the MATLAB Editor to Create M-Files 1.7.3 Getting Help 1.7.4 Saving and Retrieving a Work Session 1.8 How References Are Organized in the Book Summary 2 Fundamentals Preview 2.1 Digital Image Representation 2.1.1 Coordinate Conventions 2.1.2 Images as Matrices 2.2 Reading Images 2.3 Displaying Images 2.4 Writing Images 2.5 Data Classes 2.6 Image Types 2.6.1 Intensity Images 2.6.2 Binary Images 2.6.3 A Note on Terminology 2.7 Converting between Data Classes and Image Types 2.7.1 Converting between Data Classes 2.7.2 Converting between Image Classes and Types 2.8 Array Indexing 2.8.1 Vector Indexing 2.8.2 Matrix Indexing 2.8.3 Selecting Array Dimensions 2.9 Some Important Standard Arrays 2.10 Introduction to M-Function Programming 2.10.1 M-Files 2.10.2 Operators 2.10.3 Flow Control 2.10.4 Code Optimezation 2.10.5 Interactive I/O 2.10.6 A Brief Introduction to Cell Arrays and Structures Summary 3 Intensity Transformations and Spatial Filtering Preview 3.1 Background 3.2 Intensity Transformation Functions 3.2.1 Function imadjust 3.2.2 Logarithmic and Contrast-Stretching Transformations 3.2.3 Some Utility M-Functions for Intensity Transformations 3.3 Histogram Processing and Function Plotting 3.3.1 Generating and Plotting Image Histograms 3.3.2 Histogram Equalization 3.3.3 Histogram Matching (Specification) 3.4 Spatial Filtering 3.4.1 Linear Spatial Filtering 3.4.2 Nonlinear Spatial Filtering 3.5 Image Processing Toolbox Standard Spatial Filters 3.5.1 Linear Spatial Filters 3.5.2 Nonlinear Spatial Filters Summary 4 Frequency Domain Processing Preview 4.1 The 2-D Discrete Fourier Transform 4.2 Computing and Visualizing the 2-D DFT in MATLAB 4.3 Filtering in the Frequency Domain 4.3.1 Fundamental Concepts 4.3.2 Basic Steps in DFT Filtering 4.3.3 An M-function for Filtering in the Frequency Domain 4.4 Obtaining Frequency Domain Filters from Spatial Filters 4.5 Generating Filters Directly in the Frequency Domain 4.5.1 Creating Meshgrid Arrays for Use in Implementing Filters in the Frequency Domain 4.5.2 Lowpass Frequency Domain Filters 4.5.3 Wireframe and Surface Plotting 4.6 Sharpening Frequency Domain Filters 4.6.1 Basic Highpass Filtering 4.6.2 High-Frequency Emphasis Filtering Summary 5 Image Restoration Preview 5.1 A Model of the Image Degradation/Restoration Process 5.2 Noise Models 5.2.1 Adding Noise with Function imnoise 5.2.2 Generating Spatial Random Noise with a Specified Distribution 5.2.3 Periodic Noise 5.2.4 Estimating Noise Parameters 5.3 Restoration in the Presence of Noise Only-Spatial Filtering 5.3.1 Spatial Noise Filters 5.3.2 Adaptive Spatial Filters 5.4 Periodic Noise Reduction by Frequency Domain Filtering 5.5 Modeling the Degradation Function 5.6 Direct Inverse Filtering 5.7 Wiener Filtering 5.8 Constrained Least Squares(Regularized)Filtering 5.9 Iterative Nonlinear Restoration Using the Lucy-Richardson Algorithm 5.10 Blind Deconvolution 5.11 Geometric Transformations and Image Registration 5.11.1 Geometric Spatial Transformations 5.11.2 Applying Spatial Transformations to Images 5.11.3 Image Registration Summary 6 Color Image Processing Preview 6.1 Color Image Representation in MATLAB 6.1.1 RGB Images 6.1.2 Indexed Images 6.1.3 IPT Functions for Manipulating RGB and Indexed Images 6.2 Converting to Other Color Spaces 6.2.1 NTSC Color Space 6.2.2 The YCbCr Color Space 6.2.3 The HSV Color Space 6.2.4 The CMY and CMYK Color Spaces 6.2.5 The HSI Color Space 6.3 The Basics of Color Image Processing 6.4 Color Transformations 6.5 Spatial Filtering of Color Images 6.5.1 Color Images Smoothing 6.5.2 Color Images Sharpening 6.6 Working Directly in RGB Vector Space 6.6.1 Color Edge Detection Using the Gradient 6.6.2 Image Segmentation in RGB Vector Space Summary 7 Wavelets Preview 7.1 Background 7.2 The Fast Wavelet Transform 7.2.1 FWTs Using the Wavelet Toolbox 7.2.2 FWTs without the Wavelet Toolbox 7.3 Working with Wavelet Decomposition Structures 7.3.1 Editing Wavelet Decomposition Coefficients without the Wavelet Toolbox 7.3.2 Displaying Wavelet Decomposition Coefficients 7.4 The Inverse Fast Wavelet Transform 7.5 Wavelets in Image Processing Summary 8 Image Compression Preview 8.1 Background 8.2 Coding Redundancy 8.2.1 Huffman Codes 8.2.2 Huffman Encoding 8.2.3 Huffman Decoding 8.3 Interpixel Redundancy 8.4 Psychovisual Redundancy 8.5 JPEG Compression 8.5.1 JPEG 8.5.2 JPEG 2000 Summary 9 Moorphological Image Processing Preview 9.1 Preliminaries 9.1.1 Some Basic Concepts from Set Theory 9.1.2 Binary Images,Sets,and Logical Operators 9.2 Dilation and Erosion 9.2.1 Dilation 9.2.2 Structuring Element Decomposition 9.2.3 The strel Function 9.2.4 Erosion 9.3 Combining Dilation and Erosion 9.3.1 Opening and Closing 9.3.2 The Hit-or-Miss Transformation 9.3.3 Using Lookup Tables 9.3.4 Function bwmorph 9.4 Labeling Connected Components 9.5 Morphological Reconstruction 9.5.1 Opening by Reconstruction 9.5.2 Filling Holes 9.5.3 Clearing Border Objects 9.6 Gray-Scale Morphology 9.6.1 Dilation and Erosion 9.6.2 Opening and Closing 9.6.3 Reconstruction Summary 10 Image Segmentation Preview 10.1 Point,Line,and Edge Detection 10.1.1 Point Detection 10.1.2 Line Detection 10.1.3 Edge Detection Using Function edge 10.2 Line Detection Using the Hough Transform 10.2.1 Hough Transform Peak Detection 10.2.2 Hough Transform Line Detection and Linking 10.3 Thresholding 10.3.1 Global Thresholding 10.3.2 Local Thresholding 10.4 Region-Based Segmentation 10.4.1 Basic Formulation 10.4.2 Region Growing 10.4.3 Region Splitting and Merging 10.5 Segmentation Using the Watershed Transform 10.5.1 Watershed Segmentation Using the Distance Transform 10.5.2 Watershed Segmentation Using Gradients 10.5.3 Marker-Controlled Watershed Segmentation Summary 11 Representation and Description Preview 11.1 Background 11.1.1 Cell Arrays and Structures 11.1.2 Some Additional MATLAB and IPT Functions Used in This Chapter 11.1.3 Some Basic Utility M-Functions 11.2 Representation 11.2.1 Chain Codes 11.2.2 Polygonal Approximations Usin Minimum-Perimeter Polygons 11.2.3 Signatures 11.2.4 Boundary Segments 11.2.5 Skeletons 11.3 Boundary Descriptors 11.3.1 Some Simple Descriptors 11.3.2 Shape Numbers 11.3.3 Fourier Descriptors 11.3.4 Statistical Moments 11.4 Regional Descriptors 11.4.1 Function regionprops 11.4.2 Texture 11.4.3 Moment Invariants 11.5 Using Principal Components for Description Summary 12 Object Recognition Preview 12.1 Background 12.2 Computing Distance Measures in MATLAB 12.3 Recognition Based on Decision-Theoretic Methods 12.3.1 Forming Pattern Vectors 12.3.2 Pattern Matching Using Minimum-Distance Classifiers 12.3.3 Matching by Correlation 12.3.4 Optimum Statistical Classifiers 12.3.5 Adaptive Learning Systems 12.4 Structural Recognition 12.4.1 Working with Strings in MATLAB 12.4.2String Matching Summary Appendix A Function Summary Appendix B ICE and MATLAB Graphical User Interfaces Appendix C M-Functions Bibliography Index