Preface CHAPTER I The Crystal Structure of Solids Preview 1.1 Semiconductor Materials 1.2 Types of Solids 1.3 Space Lattices 1.3.1 Primitive and Unit Cell 1.3.2 Basic Crystal Structures 1.3.3 Crystal Planes and Miller Indices 1.3.4 The Diamond Structure 1.4 Atomic Bonding 1.5 Imperfections and Impurities in Solids 1.5.1 Imperfections in Solids 1.5.2 Impurities in Solids 1.6 Growth of Semiconductor Materials 1.6.1 Growth from a Melt 1.6.2 Epitaxial Growth 1.7 Summary Problems CHAPTER 2 Introduction to Quantum Mechanics Preview 2.1 Principles of Quantum Mechanics 2.1.1 Energy Quanta 2.1.2 Wave-Particle Duality 2.1.3 The Uncertainty Principle 2.2 Schrodinger's Wave Equation 2.2.1 The Wave Equation 2.2.2 Physical Meaning of the Wave Function 2.2.3 Boundary Conditions 2.3 Applications of Schrodinger's Wave Equation 2.3.1 Electron in Free Space 2.3.2 The Infinite Potential Well 2.3.3 The Step Potential Function 2.3.4 The Potential Barrier 2.4 Extensions of the Wave Theory to Atoms 2.4.1 The One-Electron Atom 2.4.2 The Periodic Table 2.5 Summary Problems CHAPTER 3 Introduction to the Quantum Theory of Solids Preview 3.1 Allowed and Forbidden Energy Bands 3.1.1 Fromation of Energy Bands 3.1.2 The Kronig-Penney Model 3.1.3 The k-Space Diagram 3.2 Electrical Conduction in Solids 3.2.1 The Energy Band and the Bond Model 3.2.2 Drift Current 3.2.3 Electron Effective Mass 3.2.4 Concept of the Hole 3.2.5 Metals,Insulators,and Semiconductors 3.3 Extension to Three Dimensions 3.3.1 The k-Space Diagrams of Si and GaAs 3.3.2 Additional Effective Mass Concepts 3.4 Density of States Function 3.4.1 Mathematical Derivation 3.4.2 Extension to Semiconductors 3.5 Statistical Mechanics 3.5.1 Statistical Laws 3.5.2 The Fermi-Dirac Probability Function 3.5.3 The Distribution Function and the Fermi Energy 3.6 Summary Problems CHAPTER 4 The Semiconductor in Equilibrium Preview 4.1 Charge Carriers in Semiconductors 4.1.1 Equilibrium Distribution of Electrons and Holes 4.1.2 The no and po Equations 4.1.3 The Intrinsic Carrier Concentration 4.1.4 The Intrinsic Fermi-Level Position 4.2 Dopant Atoms and Energy Levels 4.2.1 Qualitative Description 4.2.2 Ionization Energy 4.2.3 Group III-V Semiconductors 4.3 The Extrinsic Semiconductor 4.3.1 Equilibrium Distribution of Electrons and Holes 4.3.2 The nopo Product 4.3.3 The Fermi-Dirac Integral 4.3.4 Degenerate and Nondegenerate Semiconducors 4.4 Statistics of Donors and Acceptors 4.4.1 Probability Function 4.4.2 Complete Ionization and Acceptors 4.5 Charge Neutrality 4.5.1 Compenated Semiconductors 4.5.2 Equilibrium Electron and Hole Concentrations 4.6 Position of Fermi Energy Level 4.6.1 Mathematical Derivation 4.6.2 Variation of Ep with Doping Concentration and Temperature 4.6.3 Relevance of the Fermi Energy 4.7 Summary Problems CHAPTER 5 Carrier Transport Phenomena Preview 5.1 Carrier Drift 5.1.1 Drift Current Density 5.1.2 Mobility Effects 5.1.3 Conductivity 5.1.4 Velocity Saturation 5.2 Carrier Diffusion 5.2.1 Diffusion Curent Density 5.2.2 Total Current Density 5.3 Graged Impurity Distribution 5.3.1 Induced Electric Fild 5.3.2 The Einstein Relation 5.4 The Hall Effect 5.5 Summary Problems CHAPTER 6 Nonequilibrium Excess Carriers in Semiconductors Preview 6.1 Carrier Generation and Recombination 6.1.1 The Semiconductor in Equilibrium 6.1.2 Excess Carrier Generation and Recombination 6.2 Characteristics of Excess Carriers 6.2.1 Comtinuity Equations 6.2.2 Time-Dependent Diffusion Equations 6.3 Ambipolar Transport 6.3.1 Derivation of the Ambipolar Transport Equation 6.3.2 Limits of Extrinsic Doping and Low Injection 6.3.3 Applications of the Ambipolar Transport Equation 6.3.4 Dielectric Relaxation Time Constant 6.3.5 Haymes-Shockley Experiment 6.4 Quasi-Fermi Energy Levels 6.5 Excess-Carrier Lifetime 6.5.1 Shockley-Read-Hall Theory of Recombination 6.5.2 Limits of Extrinsic Doping and Low Injection 6.6 Surface Effects 6.6.1 Surface States 6.6.2 Surface Recombination Velocity 6.7 Summary Problems CHAPTER 7 The pn Junction Preview 7.1 Basic Structure of the pn Junction 7.2 Zero Applied Bias 7.2.1 Built-in Potential Barrier 7.2.2 Electric Field 7.2.3 Space Charge Width 7.3 Reverse Applied Bias 7.3.1 Space Charge Width and Electric Field 7.3.2 Junction Capacitance 7.3.3 One-Sided Junctions 7.4 Nonuniformly Doped Junctions 7.4.1 Linearly Graded Junction 7.4.2 Hyperabrupt Junctions 7.5 Summary Problems CHAPTER 8 The pn Junction Diode Preview 8.1 pn Junction Current 8.1.1 Qualitative Description of Charge Flow in a pn Junction 8.1.2 Ideal Current-Voltage Relationship 8.1.3 Boundary Conditions 8.1.4 Minority Carrier Distribution 8.1.5 Ideal pn Junction Current 8.1.6 Summary of Physics 8.1.7 Temperature Effects 8.1.8 The"Short"Diode 8.2 Small-Signal Model of the pn Junction 8.2.1 Diffusion Resistance 8.2.2 Small-Signal Admittance 8.2.3 Equivalent Circuit 8.3 Generation-Recombination Currents 8.3.1 Reverse-Bias Generation Current 8.3.2 Forward-Bias Recambination Current 8.3.3 Total Forward-Bias Current 8.4 Junction Breakdown 8.5 Charge Storage and Diode Transients 8.5.1 The Turn-off Transient 8.5.2 The Turn-on Transient 8.6 The Tunnel Diode 8.7 Summary Problems CHAPTER 9 Metal-Semiconductor and Semiconductor Heterojunctions Preview 9.1 The Schottky Barrier Diode 9.1.1 Qualitative Characteristics 9.1.2 Ideal Junction Properties 9.1.3 Nonideal Effects on the Barrier Height 9.1.4 Current-Voltage Relationship 9.1.5 Comparison of the Schottky Barier Diode and the pn Junction Diode 9.2 Metal-Semiconductor Ohmic Contacts 9.2.1 Idal Nonrectifying Barriers 9.2.2 Tunneling Barrier 9.2.3 Specific Cotact Resistance 9.3 Heterojunctions 9.3.1 Heterojunction Materials 9.3.2 Energy-Band Diagrams 9.3.3 Two-Dimensional Electron Gas 9.3.4 Equilibrium Electrostatics 9.3.5 Current-Voltage Characteristics 9.4 Summary Problems CHAPTER 10 The Bipolar Transistor Preview 10.1 The Bipolar Transistor Action 10.1.1 The Basic Principle of Operation 10.1.2 Simplified Transistor Current Relations 10.1.3 The Modes of Operation 10.1.4 Amplification with Bipolar Transistors 10.2 Minority Carrier Distribution 10.2.1 Forward-Active Mode 10.2.2 Other Modes of Operation 10.3 Low-Frequency Common-Base Current Gain 10.3.1 Contributing Factors 10.3.2 Mathematical Derivation of Current Gain Factors 10.3.3 Summary 10.3.4 Expmle Calculations of the Gain Factors 10.4 Nonideal Effects 10.4.1 Base Width Modulation 10.4.2 High Injection 10.4.3 Emitter Bandga Narrowing 10.4.4 Current Crowding 10.4.5 Nonuniform Base Doping 10.4.6 Breakdown Voltage 10.5 Equivalent Circuit Models 10.5.1 Ebers-Moll Model 10.5.2 Gummel-Poon Model 10.5.3 Hybrid-Pi Model 10.6 Frequency Limitations 10.6.1 Time-Delay Factors 10.6.2 Transistor Cutoff Frequency 10.7 Large-Signal Switching 10.7.1 Switching Characteristics 10.7.2 The Schottkey-Clamped Transistor 10.8 Other Bipolar Transistor Strures 10.8.1 Polysilicon Emitter BJT 10.8.2 Silicon-Germanium Base Transistor 10.8.3 Heterojunction Bipolar Transistors 10.9 Summary Problems CHAPTER 11 Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor Preview 11.1 The Two-Terminal MOS Structure 11.1.1 Energy-Band Diagrams 11.1.2 Depletion Layer Thickness 11.1.3 Work Function Differences 11.1.4 Flat-Band Voltage 11.1.5 Threshold Voltage 11.1.6 Charge Distribution 11.2 Capacitance-Voltage Characteristics 11.2.1 Ideal C-V Characteristics 11.2.2 Frequency Effects 11.2.3 Fixed Oxide and Interface Charge Effects 11.3 The Basic MODFET Operation 11.3.1 MOSFET Structures 11.3.2 Current-Voltage Relationship-Concepts 11.3.3 Current-Voltage Relationship-Mathematical Derivation 11.3.4 Transconductance 11.3.5 Substrate Bias Effects 11.4 Frequency Limiations 11.4.1 Small-Signal Equivalent Circuit 11.4.2 Frequency Limitation Factors and Cutoff Frequency 11.5 The CMOS Technology 11.6 Summary Problems CHAPTER 12 Metal-Oxide-Semiconductor Field-Effect Transistor :Additional Concepts Preview 12.1 Nonideal Effects 12.1.1 Subthreshold Conduction 12.1.2 Channel Length Modulation 12.1.3 Mobility Variation 12.1.4 Velocity Saturation 12.1.5 Ballistic Transport 12.2 MOSFET Scaling 12.2.1 Constant-Field Scaling 12.2.2 Threshold Voltage-First Aroximations 12.2.3 Generalized Scaling 12.3 Threshold Voltage Modifications 12.3.1 Short-Channel Effects 12.3.2 Narrow-Channel Effects 12.4 Additional Electrical Characteristics 12.4.1 Breakdown Voltage 12.4.2 The Lightly Doped Drain Transistor 12.4.3 Threshold Adjustment by Ion Implantation 12.5 Rabiation and Hot-Electron Effects 12.5.1 Radiation-Induced Oxided Charge 12.5.2 Radiation=Induced Interface States 12.5.3 Hot-Electron Charging Effects 12.6 Summary Problems CHAPTER 13 The Junction Field-Effect Transistor Preview 13.1 JEET Concepts 13.1.1 Basic pn JFTE Operation 13.1.2 Basic MESFET Operation 13.2 The Device Characteristics 13.2.1 Iternal Pinchoff Votage ,Pinchoff Voltage,and Drain-to-Source Saturation Voltage 13.2.2 Ideal DC Current-Voltage Relationship-Depletion Mode JFET 13.2.3 Transconductance 13.2.4 The MESFET 13.3 Nonideal MESFET 13.3.1 Channel Length Modulation 13.3.2 Velocity Saturation Effects 13.3.3 Subthreshold and Gate Current Effects 13.4 Equivalent Circuit and Frequency Limitations 13.4.1 Small-Signal Equivalent Circuit 13.4.2 Frequency Limitation Factors and Cutoff Frequency 13.5 High Electron Mobility Transistor 13.5.1 Quantum Well Structures 13.5.2 Transistor Performance 13.6 Summary Problems CHAPTER 14 Optical Devices Preview 14.1 Optical Absorption 14.1.1 Photon Absorption Coefficient 14.1.2 Electron-Hole Pair Generation Rate 14.2 Solar Cells 14.2.1 The pn Junction Solar Cell 14.2.2 Conversion Efficiency and Solar Concentration 14.2.3 Nonuniform Absorption Effects 14.2.4 The Heterojunction Solar Cell 14.2.5 Amorphous Silicon Solar Cells 14.3 Photodetectors 14.3.1 Photonductor 14.3.2 Photodiode 14.3.3 PIN Photodiode 14.3.4 Avalanche Photodiode 14.3.5 Phototransistor 14.4 Photoluminescence and Electroluminescence 14.4.1 Basic Transitions 14.4.2 Luminescent Efficiency 14.4.3 Materials 14.5 Light Emitting Diodes 14.5.1 Generation of Light 14.5.2 Internal Quantum Efficiency 14.5.3 External Quantum Efficiency 14.5.4 LED Devices 14.6 Laser Diodes 14.6.1 Stimulated Emission and Population Inversion 14.6.2 Optical Cavity 14.6.3 Threshold Current 14.6.4 Device Structures and Characteristics 14.7 Summary Problem CHAPTER 15 Semiconductor Power Devices Preview 15.1 Power Bipolar Transistors 15.1.1 Vertical Power Transistor Structure 15.1.2 Power Transistor Characteristics 15.1.3 Darlington Pair Configuration 15.2 Power MOSFETs 15.2.1 Power Transistor Structures 15.2.2 Power MOSFET Characteristics 15.2.3 Parasitic BJT 15.3 Heat Sinks and Junction Temperature 15.4 The Thyristor 15.4.1 The Basic Characteristics 15.4.2 Triggering the SCR 15.4.3 SCR Turn-Off 15.4.4 Device Structures 15.5 Summary Problems APPENDIX A Selected List of Symbols APPENDIX B System of Units, Conversion Factors,and General Constants APPENDIX C The Periodic Table APPNDIX D The Error Function APPNDIX E "Derivation"of Schrodinger's Wave Equation APPNDIX F Unit of Energy-The Electron-Volt APPNDIX G Answers to Selected Problems Index