注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術自然科學物理學物理學和工程學中的數(shù)學方法

物理學和工程學中的數(shù)學方法

物理學和工程學中的數(shù)學方法

定 價:¥169.00

作 者: ( )K.F.Riley等著
出版社: 世界圖書出版公司北京公司
叢編項:
標 簽: 工程數(shù)學

購買這本書可以去


ISBN: 9787506265591 出版時間: 2003-01-01 包裝: 精裝
開本: 22cm 頁數(shù): 1232頁 字數(shù):  

內(nèi)容簡介

  Since the publication of the first edition of this book, both through teaching the material it covers and as a result of receiving helpful comments from colleagues, we have become aware of the desirability of changes in a number of areas. The most important of these is that the mathematical preparation of current senior college and university entrants is now less thorough than it used to be. To match this, we decided to include a preliminary chapter covering areas such as polynomial equations, trigonometric identities, coordinate geometry, partial fractions, binomial expansions, necessary and sufficient condition and proof by induction and contradiction.本書為英文版。

作者簡介

  KEN RILEY read Mathematics at the University of Cambridge and proceeded to a Ph.D. there in theoretical and experimental nuclear physics.He became a Research Associate in elementary prticl physics at Brookhaven, and then, having taken up a lectureship at the Cavendish Laboratory, Cambridge, Continued this research at the Tutherford Laboratory and Stanford; in particular he was involved in the experimental discovery of a number of the early baryonic resonances. As well as having been Senior Tutor at Clare College, where he has taught physics and mathematics for nearly forty years, he has served on many committees concerned with the teaching and examining of these subjects at all levels of tertiary and undergraduate deucation. He is also one of the authors 200 puzzling Physics Problems.

圖書目錄

Prefacetothesecondedition
Prefacetothefirstedition
1Preliminaryalgebra
1.1Simplefunctionsandequations
Polynomialequations;factorisation;propertiesofroots
1.2Trigonometricidentities
Singleangle;compound-angles;double-andhalf-angleidentities
1.3Coordinategeometry
1.4Partialfractions
Complicationsandspecialcases
1.5Binomialexpansion
1.6Propertiesofbinomialcoefficients
1.7Someparticularmethodsofproof
Proofbyinduction;proofbycontradiction;necessaryandsufficientconditions
1.8Exercises
1.9Hintsandanswers
2Preliminarycalculus
2.1Differentiation
Differentiationfromfirstprinciples:products;thechainrule;quotients;implicitdifferentiation;logarithmicdifferentiation;Leibnitz'theorem;specialpointsofafunction:curvature:theoremsofdifferentiation
2.2Integration
Integrationfromfirstprinciples;theinverseofdifferentiation;byinspection;sinusoidalJhnctions;logarithmicintegration;usingpartialfractions;substitutionmethod;integrationbyparts;reductionformulae;infiniteandimproperintegrals;planepolarcoordinates;integralinequalities;applicationsofintegration
2.3Exercises
2.4Hintsandanswers
3Complexnumbersandhyperbolicfunctions
3.1Theneedforcomplexnumbers
3.2Manipulationofcomplexnumbers
Additionandsubtraction;modulusandargument;multiplication;complexconjugate;division
3.3PolarrepresentationofcomplexnumbersMultiplicationanddivisioninpolarform
3.4deMoivre'stheorem
trigonometricidentities;findingthenthrootsofunity:solvingpolynomialequations
3.5Complexlogarithmsandcomplexpowers
3.6Applicationstodifferentiationandintegration
3.7Hyperbolicfunctions
Definitions;hyperbolic-trigonometricanalogies;identitiesofhyperbolicfunctions:solvinghyperbolicequations;inversesofhyperbolicfunctions;calculusofhyperbolicfunctions
3.8Exercises
3.9Hintsandanswers
4Seriesandlimits
4.1Series
4.2Summationofseries
Arithmeticseries;geometricseries;arithmetico-geometricseries;thedifferencemethod;seriesinvolvingnaturalnumbers;transformationofseries
4.3Convergenceofinfiniteseries
Absoluteandconditionalconvergence;seriescontainingonlyrealpositiveterms;alternatingseriestest
4.4Operationswithseries
4.5Powerseries
Convergenceofpowerseries;operationswithpowerseries
4.6Taylorseries
Taylor'stheorem;approximationerrors;standardMaclaurinseries
4.7Evaluationoflimits
4.8Exercises
4.9Hintsandanswers
5Partialdifferentiation
5.1Definitionofthepartialderivative
5.2Thetotaldifferentialandtotalderivative
5.3Exactandinexactdifferentials
5.4Usefultheoremsofpartialdifferentiation
5.5Thechainrule
5.6Changeofvariables
5.7Taylor'stheoremformany-variablefunctions
5.8Stationaryvaluesofmany-variablefunctions
5.9Stationaryvaluesunderconstraints
5.10Envelopes
5.11Thermodynamicrelations
5.12Differentiationofintegrals
5.13Exercises
5.14Hintsandanswers
6Multipleintegrals
6.1Doubleintegrals
6.2Tripleintegrals
6.3Applicationsofmultipleintegrals
Areasandvolumes;masses,centresofmassandcentroids;Pappus'theorems;momentsofinertia;meanvaluesoffunctions
6.4Changeofvariablesinmultipleintegrals
Changeofvariablesindoubleintegrals;evaluationoftheintegralI=changeofvariablesintripleintegrals;generalpropertiesofJacobians
6.5Exercises
6.6Hintsandanswers
7Vectoralgebra
7.1Scalarsandvectors
7.2Additionandsubtractionofvectors
7.3Multiplicationbyascalar
7.4Basisvectorsandcomponents
7.5Magnitudeofavector
7.6Multiplicationofvectors
Scalarproduct;vectorproduct;scalartripleproduct;vectortripleproduct
7.7Equationsoflines,planesandspheres
7.8Usingvectorstofinddistances
Pointtoline;pointtoplane;linetoline;linetoplane
7.9Reciprocalvectors
7.10Exercises
7.11Hintsandanswers
8Matricesandvectorspaces
8.1Vectorspaces
Basisvectors;innerproduct;someusefulinequalities
8.2Linearoperators
8.3Matrices
8.4Basicmatrixalgebra
Matrixaddition;multiplicationbyascalar;matrixmultiplication
8.5Functionsofmatrices
8,6Thetransposeofamatrix
8.7ThecomplexandHermitianconjugatesofamatrix
8.8Thetraceofamatrix
8.9Thedeterminantofamatrix
Propertiesofdeterminants
8.10Theinverseofamatrix
8.11Therankofamatrix
8.12Specialtypesofsquarematrix
Diagonal;triangular;symmetricandantisymmetric;orthogonal;Hermitianandanti-Hermitian;unitary;normal
8.13Eigenvectorsandeigenvalues
Oranormalmatrix;ofHermitianandanti~Herrnitianmatrices;oraunitarymatrix;orageneralsquarematrix
8.14Determinationofeigenvaluesandeigenvectors
Degenerateeigenvalues
8.15Changeofbasisandsimilaritytransformations
8.16Diagonalisationofmatrices
8.17QuadraticandHermitianforms
Stationarypropertiesoftheeigenvectors;quadraticsurfaces
8.18Simultaneouslinearequations
Range;nullspace;NsimultaneouslinearequationsinNunknowns;singularvaluedecomposition
8.19Exercises
8.20Hintsandanswers
9Normalmodes
9.1Typicaloscillatorysystems
9.2Symmetryandnormalmodes
9.3Rayleigh-Ritzmethod
9.4Exercises
9.5Hintsandanswers
10Vectorcalculus
10.1Differentiationofvectors
Compositevectorexpressions;differentialofavector
10.2Integrationofvectors
10.3Spacecurves
10.4Vectorfunctionsofseveralarguments
10.5Surfaces
10.6Scalarandvectorfields
10.7Vectoroperators
Gradientofascalarfield:divergenceofavectorfield:curlofavectorfield
10.8Vectoroperatorformulae
Vectoroperatorsactingonsumsandproducts;combinationsofgrad,divandcurl
10.9Cylindricalandsphericalpolarcoordinates
10.10Generalcurvilinearcoordinates
10.11Exercises
10.12Hintsandanswers
11Line,surfaceandvolumeintegrals
11.1Lineintegrals
Evaluatinglineintegrals;physicalexamples;lineintegralswithrespecttoascalar
11.2Connectivityofregions
11.3Green'stheoreminaplane
11.4Conservativefieldsandpotentials
11.5Surfaceintegrals
Evaluatingsurfaceintegrals;vectorareasofsurfaces;physicalexamples
11.6Volumeintegrals
Volumesofthree-dimensionalregions
11.7Integralformsforgrad,divandcurl
11.8Divergencetheoremandrelatedtheorems
Green'stheorems;otherrelatedintegraltheorems;physicalapplications
11.9Stokes'theoremandrelatedtheorems
Relatedintegraltheorems:physicalapplications
11.10Exercises
11.11Hintsandanswers
12Fourierseries
12.1TheDirichletconditions
12.2TheFouriercoefficients
12.3Symmetryconsiderations
12.4Discontinuousfunctions
12.5Non-periodicfunctions
12.6Integrationanddifferentiation
12.7ComplexFourierseries
12.8Parseval'stheorem
12.9Exercises
12.10Hintsandanswers
13Integraltransforms
13.1Fouriertransforms
Theuncertaintyprinciple;Fraunhoferdiffraction:theDirac&-function:relationofthe6-functiontoFouriertransforms;propertiesofFouriertransJorms;oddandevenfunctions;convolutionanddeconvolution;correlationfunctionsandenergyspectra;Parseval'stheorem;Fouriertransformsinhigherdimensions
13.2Laplacetransforms
Laplacetransformsofderivativesandintegrals;otherpropertiesofLaplacetransforms
13.3Concludingremarks
13.4Exercises
13.5Hintsandanswers
14First-orderordinarydifferentialequations
14.1Generalformofsolution
14.2First-degreefirst-orderequations
Separable-variableequations;exactequations;inexactequations,integratingfactors;linearequations;homogeneousequations;isobaricequations:Bernoulli'sequation;miscellaneousequations
14.3Higher-degreefirst-orderequations
Equationssolubleforp;forx;fory;Clairaut'sequation
14.4Exercises
14.5Hintsandanswers
15Higher-orderordinarydifferentialequations
15.1Linearequationswithconstantcoefficients
Findingthecomplementaryfunctionyc(x):findingtheparticularintegralyp(x);constructingthegeneralsolutionye(x)+yp(x):linearrecurrencerelations:Laplacetransformmethod
15.2Linearequationswithvariablecoefficients
TheLegendreandEulerlinearequations;exactequations;partiallyknowncomplementaryfunction;variationofparameters;Green'sfunctions;canonicalformforsecond-orderequations
15.3Generalordinarydifferentialequations
Dependentvariableabsent;independentvariableabsent;non-linearexactequations;isobaricorhomogeneousequations;equationshomogeneousinxoryalone;equationshavingy=Aexasasolution
15.4Exercises
15.5Hintsandanswers
16Seriessolutionsofordinarydifferentialequations
16.1Second-orderlinearordinarydifferentialequations
Ordinaryandsingularpoints
16.2Seriessolutionsaboutanordinarypoint
16.3Seriessolutionsaboutaregularsingularpoint
Distinctrootsnotdifferingbyaninteger;repeatedrootoftheindicialequation;distinctrootsdifferingbyaninteger
16.4Obtainingasecondsolution
TheWronskianmethod;thederivativemethod;seriesformofthesecondsolution
16.5Polynomialsolutions
16.6Legendre'sequation
Generalsolutionforinteger1;propertiesofLegendrepolynomials
16.7Bessersequation
Generalsolutionfornon-integerv;generalsolutionforintegerv;propertiesofBesselfunctions
16.8Generalremarks
16.9Exercises
16.10Hintsandanswers
17Eigenfunctionmethodsfordifferentialequations
17.1Setsoffunctions
Someusefulinequalities
17.2AdjointandHermitianoperators
17.3ThepropertiesofHermitianoperators
Realityoftheeigenvalues;orthogonalityoftheeigenfunctions;constructionofrealeigenfunctions
17.4Sturm-Liouvilleequations
Validboundaryconditions;puttinganequationintoSturm-Liouvilleform
17.5ExamplesofSturm-Liouvilleequations
Legendre'sequation;theassociatedLegendreequation;Bessel'sequation;thesimpleharmonicequation;Hermite'sequation;Laguerre'sequation;Chebyshev'sequation
17.6Superpositionofeigenfunctions:Green'sfunctions
17.7Ausefulgeneralisation
17.8Exercises
17.9Hintsandanswers
18Partialdifferentialequations:generalandparticularsolutions
18.1Importantpartialdifferentialequations
Thewaveequation;thediffusionequation;Laplace'sequation;Poisson'sequation;SchrOdinger'sequation
18.2Generalformofsolution
18.3Generalandparticularsolutions
First-orderequations;inhomogeneousequationsandproblems;second-orderequations
18.4Thewaveequation
18.5Thediffusionequation
18.6Characteristicsandtheexistenceofsolutions
First-orderequations;second-orderequations
18.7Uniquenessofsolutions
18.8Exercises
18.9Hintsandanswers
19Partialdifferentialequations:separationofvariablesandothermethods
19.1Separationofvariables:thegeneralmethod
19.2Superpositionofseparatedsolutions
19.3Separationofvariablesinpolarcoordinates
Laplace'sequationinpolarcoordinates:sphericalharmonics:otherequationsinpolarcoordinates;solutionbyexpansion;separationofvariablesforinhomogeneousequations
19.4Integraltransformmethods
19.5Inhomogeneousproblems-Green'sfunctions
SimilaritiestoGreen'sfunctionsforordinarydifferentialequations:generalboundary-valueproblems:Dirichletproblems;Neumannproblems
19.6Exercises
19.7Hintsandanswers
20Complexvariables
20.1Functionsofacomplexvariable
20.2TheCauchy-Riemannrelations
20.3Powerseriesinacomplexvariable
20.4Someelementaryfunctions
20.5Multivaluedfunctionsandbranchcuts
20.6Singularitiesandzeroesofcomplexfunctions
20.7Complexpotentials
20.8Conformaltransformations
20.9Applicationsofconformaltransformations
20.10Complexintegrals
20.11Cauchy'stheorem
20.12Cauchy'sintegralformula
20.13TaylorandLaurentseries
20.14Residuetheorem
20.15Locationofzeroes
20.16Integralsofsinusoidalfunctions
20.17Someinfiniteintegrals
20.18Integralsofmultivaluedfunctions
20.19Summationofseries
20.20InverseLaplacetransform
20.21Exercises
20.22Hintsandanswers
21Tensors
21.1Somenotation
21.2Changeofbasis
21.3Cartesiantensors
21.4First-andzero-orderCartesiantensors
21.5Second-andhigher-orderCartesiantensors
21.6Thealgebraoftensors
21.7Thequotientlaw
21.8Thetensorsand
21.9Isotropictensors
21.10Improperrotationsandpseudotensors
21.11Dualtensors
21.t2Physicalapplicationsoftensors
21.13Integraltheoremsfortensors
21.14Non-Cartesiancoordinates
21.15Themetrictensor
21.16Generalcoordinatetransformationsandtensors
21.17Relativetensors
21.18DerivativesofbasisvectorsandChristoffelsymbols
21.19Covariantdifferentiation
21.20Vectoroperatorsintensorform
21.21Absolutederivativesalongcurves
21.22Geodesics
21.23Exercises
21.24Hintsandanswers
22Calculusofvariations
22.1TheEuler-Lagrangeequation
22.2Specialcases
Fdoesnotcontainyexplicitly;Fdoesnotcontainxexplicitly
22.3Someextensions
Severaldependentvariables;severalindependentvariables;higher-orderderivatives:variableend-points
22.4Constrainedvariation
22.5Physicalvariationalprinciples
Fermat'sprincipleinoptics;Hamilton'sprincipleinmechanics
22.6Generaleigenvalueproblems
22.7Estimationofeigenvaluesandeigenfunctions
22.8Adjustmentofparameters
22.9Exercises
22.10Hintsandanswers
23Integralequations
23.1Obtaininganintegralequationfromadifferentialequation
23.2Typesofintegralequation
23.3Operatornotationandtheexistenceofsolutions
23.4Closed-formsolutions
Separablekernels;integraltransformmethods;differentiation
23.5Neumannseries
23.6Fredholmtheory
23.7Schmidt-Hilberttheory
23.8Exercises
23.9Hintsandanswers
24Grouptheory
24.1Groups
Definitionofagroup;examplesofgroups
24.2Finitegroups
24.3Non-Abeliangroups
24.4Permutationgroups
24.5Mappingsbetweengroups
24.6Subgroups
24.7Subdividingagroup
Equivalencerelationsandclasses;congruenceandcosets;conjugatesandclasses
24.8Exercises
24.9Hintsandanswers
25Representationtheory
25.1Dipolemomentsofmolecules
25.2Choosinganappropriateformalism
25.3Equivalentrepresentations
25.4Reducibilityofarepresentation
25.5Theorthogonalitytheoremforirreduciblerepresentations
25.6Characters
Orthogonalitypropertyofcharacters
25.7Countingirrepsusingcharacters
Summationrulesforirreps
25.8Constructionofacharactertable
25.9Groupnomenclature
25.10Productrepresentations
25.11Physicalapplicationsofgrouptheory
Bondinginmolecules:matrixelementsinquantummechanics:degeneracyofnormalmodes:breakingofdegeneracies
25.12Exercises
25.13Hintsandanswers
26Probability
26.1Venndiagrams
26.2Probability
Axiomsandtheorems;conditionalprobability;Bayes'theorem
26.3Permutationsandcombinations
26.4Randomvariablesanddistributions
Discreterandomvariables;continuousrandomvariables
26.5Propertiesofdistributions
Mean:modeandmedian:varianceandstandarddeviation:moments:
centralmoments
26.6Functionsofrandomvariables
2617Generatingfunctions
Probabilitygeneratingfunctions;momentgeneratingfunctions;characteristicfunctions;cumulantgeneratingfunctions
26.8Importantdiscretedistributions
Binomial;geometric;negativebinomial;hypergeometric;Poisson
26.9Importantcontinuousdistributions
Gaussian:log-normahexponential;gamma;chi-squared;Cauchy;BreitWigner:uniform
26.10Thecentrallimittheorem
26.11Jointdistributions
Discretebivariate;continuousbivariate;marginalandconditionaldistributions
26.12Propertiesofjointdistributions
Means;variances;covarianceandcorrelation
26.13Generatingfunctionsforjointdistributions
26.14Transformationofvariablesinjointdistributions
26.15Importantjointdistributions
MultinominahmultivariateGaussian
26.16Exercises
26.17Hintsandanswers
27Statistics
27.1Experiments,samplesandpopulations
27.2Samplestatistics
Averages;varianceandstandarddeviation;moments;covarianceandcorrelation
27.3Estimatorsandsamplingdistributions
Consistency,biasandefficiency;Fisher'sinequality:standarderrors;confidencelimits
27.4Somebasicestimators
Mean;variance:standarddeviation;moments;covarianceandcorrelation
27.5Maximum-likelihoodmethod
MLestimator;trans]ormationinvarianceandbias;efficiency;errorsandconfidencelimits;Bayesianinterpretation;large-Nbehaviour;extendedMLmethod
27.6Themethodofleastsquares
Linearleastsquares;non-linearleastsquares
27.7Hypothesistesting
Simpleandcompositehypotheses;statisticaltests;Neyman-Pearson;generalisedlikelihood-ratio:Student'st:Fisher'sF:goodnessoffit
27.8Exercises
27.9Hintsandanswers
28Numericalmethods
28.1Algebraicandtranscendentalequations
Rearrangementoftheequation;linearinterpolation;binarychopping;Newton-Raphsonmethod
28.2Convergenceofiterationschemes
28.3Simultaneouslinearequations
Gaussianelimination;Gauss-Seideliteration;tridiagonalmatrices
28.4Numericalintegration
Trapeziumrule;Simpson'srule;Gaussianintegration;MonteCarlomethods
28.5Finitedifferences
28.6Differentialequations
Differenceequations;Taylorseriessolutions;predictionandcorrection;Runge-Kuttamethods;isoclines
28.7Higher-orderequations
28.8Partialdifferentialequations
28.9Exercises
28.10Hintsandanswers
AppendixGamma,betaanderrorfunctions
A1.1Thegammafunction
Al.2Thebetafunction
Al.3Theerrorfunction
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號