注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計算機(jī)/網(wǎng)絡(luò)網(wǎng)絡(luò)與數(shù)據(jù)通信計算機(jī)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)原理(原書第2版)

神經(jīng)網(wǎng)絡(luò)原理(原書第2版)

神經(jīng)網(wǎng)絡(luò)原理(原書第2版)

定 價:¥69.00

作 者: (美)Simon Haykin著;葉世偉,史忠植譯;葉世偉譯
出版社: 機(jī)械工業(yè)出版社
叢編項: 計算機(jī)科學(xué)叢書
標(biāo) 簽: 暫缺

ISBN: 9787111127598 出版時間: 2004-01-01 包裝: 膠版紙
開本: 26cm 頁數(shù): 633 字?jǐn)?shù):  

內(nèi)容簡介

  神經(jīng)網(wǎng)絡(luò)是計算智能和機(jī)器學(xué)習(xí)研究、開發(fā)和應(yīng)用最活躍的分支之一。本書是神經(jīng)網(wǎng)絡(luò)方面的標(biāo)準(zhǔn)教材,從理論和實際應(yīng)用出發(fā),全面、系統(tǒng)地介紹神經(jīng)網(wǎng)絡(luò)的基本模型、基本方法和基本技術(shù),對神經(jīng)網(wǎng)絡(luò)的基本模型和主要學(xué)習(xí)理論都作了深入研究,特別在學(xué)習(xí)理論和學(xué)習(xí)算法的推導(dǎo)方面有極為詳盡而系統(tǒng)地分析,對神經(jīng)網(wǎng)絡(luò)的最新發(fā)展趨勢和主要研究方向都進(jìn)行了全面而綜合的介紹。理論和實際應(yīng)用緊密結(jié)合,為神經(jīng)網(wǎng)絡(luò)的具體應(yīng)用打下堅實的基礎(chǔ),是一本可讀性極強(qiáng)的教材。SimonHaykin是加拿大McMaster大學(xué)教授,創(chuàng)辦了通信研究實驗室,并長期擔(dān)任主任。他是國際電子電氣工程界的著名學(xué)者,于1953年獲得英國伯明翰大學(xué)博士學(xué)位。曾獲得IEEEMcNaughton金獎。他是加拿大皇家學(xué)會院士,IEEE會士,在神經(jīng)網(wǎng)絡(luò)、通信、自適應(yīng)濾波器等領(lǐng)域成果頗豐,著有多種標(biāo)準(zhǔn)教材。神經(jīng)網(wǎng)絡(luò)是計算智能和機(jī)器學(xué)習(xí)研究的最活躍的分支之一。本書全面系統(tǒng)地介紹神經(jīng)網(wǎng)絡(luò)的基本概念、系統(tǒng)理論和實際應(yīng)用。本書包含四個組成部分:導(dǎo)論,監(jiān)督學(xué)習(xí),無監(jiān)督學(xué)習(xí),神經(jīng)網(wǎng)絡(luò)動力學(xué)模型。導(dǎo)論部分介紹神經(jīng)元模型、神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和機(jī)器學(xué)習(xí)的基本概念和理論。監(jiān)督學(xué)習(xí)討論感知機(jī)學(xué)習(xí)規(guī)則,有監(jiān)督的Hebb學(xué)習(xí),Widrow-Hoff學(xué)習(xí)算法,反向傳播算法及其變形,RBF網(wǎng)絡(luò),正則化網(wǎng)絡(luò),支持向量機(jī)以及委員會機(jī)器。無監(jiān)督學(xué)習(xí)包括主分量分析,自組織特征映射模型的競爭學(xué)習(xí)形式,無監(jiān)督學(xué)習(xí)的信息理論,植根于統(tǒng)計力學(xué)的隨機(jī)學(xué)習(xí)機(jī)器,最后是與動態(tài)規(guī)劃相關(guān)的增強(qiáng)式學(xué)習(xí)。神經(jīng)網(wǎng)絡(luò)動力學(xué)模型研究由短期記憶和分層前饋網(wǎng)絡(luò)構(gòu)成的動態(tài)系統(tǒng),反饋非線性動態(tài)系統(tǒng)的穩(wěn)定性和聯(lián)想記憶,以及另一類非線性動態(tài)驅(qū)動的遞歸網(wǎng)絡(luò)系統(tǒng)。本書注重對數(shù)學(xué)分析方法和性能優(yōu)化的討論,強(qiáng)調(diào)神經(jīng)網(wǎng)絡(luò)在模式識別、信號處理和控制系統(tǒng)等實際工程問題中的應(yīng)用。書中包含大量例題和習(xí)題,并配有13個基于MATLAB軟件的計算機(jī)實驗程序。本書適于作研究生或大學(xué)高年級學(xué)生的教材,也可作希望深入學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的科技人員的參考書。

作者簡介

  SimonHaykin是加拿大McMaster大學(xué)教授,創(chuàng)辦了通信研究實驗室,并長期擔(dān)任主任。他是國際電子電氣工程界的著名學(xué)者,于1953年獲得英國伯明翰大學(xué)博士學(xué)位。曾獲得IEEEMcNaughton金獎。他是加拿大皇家學(xué)會院士,IEEE會士,在神經(jīng)網(wǎng)絡(luò)、通信、自適應(yīng)濾波器等領(lǐng)域成果頗豐,著有多種標(biāo)準(zhǔn)教材。相關(guān)圖書編譯原理軟件需求組合數(shù)學(xué)(原書第4版)JAVA編程思想(第2版)3D游戲卷1實時渲染與軟件技術(shù)數(shù)據(jù)庫系統(tǒng)導(dǎo)論信息系統(tǒng)原理:原書第6版并行程序設(shè)計數(shù)據(jù)庫與事務(wù)處理操作系統(tǒng)現(xiàn)代操作系統(tǒng)(第2版)計算機(jī)網(wǎng)絡(luò):自頂向下方法與Internet特色(原書第3版)高級編譯器設(shè)計與實現(xiàn)C程序設(shè)計語言(第2版·新版)習(xí)題解答人工智能:英文可擴(kuò)展并行計算技術(shù)、結(jié)構(gòu)與編程Java面向?qū)ο蟪绦蛟O(shè)計教程C++編程思想。第2卷:實用編程技術(shù)模式分析的核方法數(shù)據(jù)倉庫(原書第3版)C++語言的設(shè)計和演化并行計算導(dǎo)論(原書第2版)離散數(shù)學(xué)導(dǎo)學(xué)數(shù)據(jù)庫設(shè)計教程(第2版)信息論、編碼與密碼學(xué)3D游戲卷2動畫與高級實時渲染技術(shù)數(shù)字圖像處理疑難解析現(xiàn)代信息檢索CAXA數(shù)控銑CAD/CAM技術(shù)C語言的科學(xué)和藝術(shù)計算機(jī)視覺UNIX系統(tǒng)編程計算機(jī)網(wǎng)絡(luò)系統(tǒng)方案(原書第3版)3D計算機(jī)圖形學(xué)(原書第3版)計算機(jī)網(wǎng)絡(luò)與因特網(wǎng)(原書第4版)計算機(jī)科學(xué)概論(原書第2版)數(shù)據(jù)庫原理、編程與性能嵌入式微控制器微機(jī)接口技術(shù)實驗教程

圖書目錄

出版者的話
專家指導(dǎo)委員會
譯者序
前言
縮寫和符號
第1章 導(dǎo)言
1.1 什么是神經(jīng)網(wǎng)絡(luò)
1.2 人腦
1.3 神經(jīng)元模型
1.4 看作有向圖的神經(jīng)網(wǎng)絡(luò)
1.5 反饋
1.6 網(wǎng)絡(luò)結(jié)構(gòu)
1.7 知識表示
1.8 人工智能和神經(jīng)網(wǎng)絡(luò)
1.9 歷史注釋
注釋和參考文獻(xiàn)
習(xí)題
第2章 學(xué)習(xí)過程
2.1 簡介
2.2 誤差修正學(xué)習(xí)
2.3 基于記憶的學(xué)習(xí)
2.4 Hebb學(xué)習(xí)
2.5 競爭學(xué)習(xí)
2.6 Boltamann學(xué)習(xí)
2.7 信任賦值問題
2.8 有教師學(xué)習(xí)
2.9 無教學(xué)學(xué)習(xí)
2.10 學(xué)習(xí)任務(wù)
2.11 記憶
2.12 自適應(yīng)
2.13 學(xué)習(xí)過程的統(tǒng)計性質(zhì)
2.14 統(tǒng)計學(xué)習(xí)理論
2.15 可能近似正確的學(xué)習(xí)模型
2.16 小結(jié)和討論
注釋的參考文獻(xiàn)
習(xí)題
第3章 單層感知器
3.1 簡介
3.2 自適應(yīng)濾波問題
3.3 無約束最優(yōu)化技術(shù)
3.4 線性最小二乘濾波器
3.5 最小均方算法
3.6 學(xué)習(xí)曲線
3.7 學(xué)習(xí)率退火進(jìn)度
3.8 感知器
3.9 感知器收斂定理
3.10 Gauss環(huán)境下感知器與Bayes分類器的關(guān)系
3.11 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第4章 多層感知器
4.1 簡介
4.2 預(yù)備知識
4.3 反向傳播算法
4.4 反向傳播算法小結(jié)
4.5 異或問題
4.6 改善反身傳播算法性能的試探法
4.7 輸出表示和決策規(guī)則
4.8 計算機(jī)實驗
4.9 特征檢測
4.10 反向傳播和微分
4.11 Hessian矩陣
4.12 泛化
4.13 函數(shù)逼近
4.14 交叉確認(rèn)
4.15 網(wǎng)絡(luò)修剪技術(shù)
4.16 反向傳播學(xué)習(xí)的優(yōu)點和局限
4.17 反向傳播學(xué)習(xí)的加速收斂
4.18 作為最優(yōu)化問題看待的有監(jiān)督學(xué)習(xí)
4.19 卷積網(wǎng)絡(luò)
4.20 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第5章 徑向基函數(shù)網(wǎng)絡(luò)
5.1 簡介
5.2 模式可分性的Cover定理
5.3 插值問題
5.4 作為不適定超曲面重建問題的監(jiān)督學(xué)習(xí)
5.5 正則化理論
5.6 正則化網(wǎng)絡(luò)
5.7 廣義徑向基函數(shù)網(wǎng)絡(luò)
5.8 XOR問題(再討論)
5.9 正則化參數(shù)估計
5.10 RBF網(wǎng)絡(luò)的逼近性質(zhì)
5.11 RBF網(wǎng)絡(luò)與多層感知器的比較
5.12 核回歸及其與RBF網(wǎng)絡(luò)的關(guān)系
5.13 學(xué)習(xí)策略
5.14 計算機(jī)實驗:模式分類
5.15 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第6章 支持向量機(jī)
6.1 簡介
6.2 線性可分模式的最優(yōu)超平面
6.3 不可分模式的最優(yōu)超平面
6.4 怎樣建立用于模式識別的支持向量機(jī)
6.5 例子: XOR問題(再討論)
6.6 計算機(jī)實驗
6.7 ε-不敏感損失函數(shù)
6.8 用于非線性回歸的支持向量機(jī)
6.9 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第7章 委員會機(jī)器
7.1 簡介
7.2 總體平均
7.3 計算機(jī)實驗I
7.4 推舉
7.5 計算機(jī)實驗II
7.6 聯(lián)想Gauss混合模型
7.7 分層混合專家模型
7.8 使用標(biāo)準(zhǔn)決策樹的模型選擇
7.9 先驗和后驗概率
7.10 最大似然估計
7.11 HME模型的學(xué)習(xí)策略
7.12 EM算法
7.13 EM算法在HME模型中的應(yīng)用
7.14 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第8章 主分量分析
8.1 簡介
8.2 自組織的一些直觀原則
8.3 主分量分析
8.4 基于Hebb的最大特征濾波器
8.5 基于Hebb的主分量分析
8.6 計算機(jī)實驗: 圖像編碼
8.7 使用側(cè)向抑制的自適應(yīng)主分量分析
8.8 兩類PCA算法
8.9 計算的集中式方法和自適應(yīng)方法
8.10 核主分量分析
8.11 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第9章 自組織映射
9.1 簡介
9.2 兩個基本的特征映射模型
9.3 自組織映射
9.4 SOM算法小結(jié)
9.5 特征映射的性質(zhì)
9.6 計算機(jī)仿真
9.7 學(xué)習(xí)向量量化
9.8 計算機(jī)實驗: 自適應(yīng)模式分類
9.9 分層向量量化
9.10 上下文映射
9.11 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第10章 信息論模型
10.1 簡介
10.2 熵
10.3 最大熵原則
10.4 互信息
10.5 Kullback-Leibler散度
10.6 互信息作為最優(yōu)化的目標(biāo)函數(shù)
10.7 最大互信息原則
10.8 最大互信息和冗余減少
10.9 空間相干特征
10.10 空間非相干特征
10.11 獨立分量分析
10.12 計算機(jī)實驗
10.13 最大似然估計
10.14 最大熵方法
10.15 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第11章 植根于統(tǒng)計力學(xué)的隨機(jī)機(jī)器和它們的逼近
11.1 簡介
11.2 統(tǒng)計力學(xué)
11.3 Markov鏈
11.4 Metropolis算法
11.5 模擬退火
11.6 Gibbs抽樣
11.7 Boltzmann機(jī)
11.8 sigmoid信度網(wǎng)絡(luò)
11.9 Helmholtz機(jī)
11.10 平均場理論
11.11 確定性的Boltzmann機(jī)
11.12 確定性的sigmoid信度網(wǎng)絡(luò)
11.13 確定性退火
11.14 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第12章 神經(jīng)動態(tài)規(guī)劃
12.1 簡介
12.2 Markov決策過程
12.3 Bellman最優(yōu)準(zhǔn)則
12.4 策略迭代
12.5 值迭代
12.6 神經(jīng)動態(tài)規(guī)劃
12.7 逼近策略迭代
12.8 Q-學(xué)習(xí)
12.9 計算機(jī)實驗
12.10 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第13章 使用前饋網(wǎng)絡(luò)的時序處理
13.1 簡介
13.2 短期記憶結(jié)構(gòu)
13.3 用于時序處理的網(wǎng)絡(luò)體系結(jié)構(gòu)
13.4 集中式時滯前饋網(wǎng)絡(luò)
13.5 計算機(jī)實驗
13.6 通用短視映射定理
13.7 神經(jīng)元的時空模型
13.8 分布式時滯前饋網(wǎng)絡(luò)
13.9 時序反向傳播算法
13.10 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第14章 神經(jīng)動力學(xué)
14.1 簡介
14.2 動態(tài)系統(tǒng)
14.3 平衡狀態(tài)的穩(wěn)定性
14.4 吸引子
14.5 神經(jīng)動態(tài)模型
14.6 作為遞歸網(wǎng)絡(luò)范例的吸引子操作
14.7 Hopfield模型
14.8 計算機(jī)實驗I
14.9 Cohen-Grossberg定理
14.10 盒中腦狀態(tài)模型
14.11 計算機(jī)實驗II
14.12 奇異吸引子和混沌
14.13 動態(tài)重構(gòu)
14.14 計算機(jī)實驗III
14.15 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
第15章 動態(tài)驅(qū)動的遞歸網(wǎng)絡(luò)
15.1 簡介
15.2 遞歸網(wǎng)絡(luò)體系結(jié)構(gòu)
15.3 狀態(tài)空間模型
15.4 有外部輸入的非線性自回歸模型
15.5 遞歸網(wǎng)絡(luò)的計算能力
15.6 學(xué)習(xí)算法
15.7 通過時間的反向傳播
15.8 實時遞歸學(xué)習(xí)
15.9 Kalman濾波器
15.10 解藕擴(kuò)展的Kalman濾波器
15.11 計算機(jī)實驗
15.12 遞歸網(wǎng)絡(luò)的消失梯度
15.13 系統(tǒng)辨識
15.14 模型參考自適應(yīng)控制
15.15 小結(jié)和討論
注釋和參考文獻(xiàn)
習(xí)題
后記
參考文獻(xiàn)
索引

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號