注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)工業(yè)技術(shù)輕工業(yè)、手工業(yè)中級(jí)材料力學(xué)

中級(jí)材料力學(xué)

中級(jí)材料力學(xué)

定 價(jià):¥54.00

作 者: (美)J.R.Barber著
出版社: 清華大學(xué)出版社
叢編項(xiàng): 國(guó)際著名力學(xué)圖書 影印版系列
標(biāo) 簽: 一般工業(yè)技術(shù)

ISBN: 9787302062646 出版時(shí)間: 2003-01-01 包裝: 平裝
開本: 23cm 頁(yè)數(shù): 594 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《中級(jí)材料力學(xué)》是為理工科大學(xué)生和工程設(shè)計(jì)人員編寫的材料力學(xué)、材料強(qiáng)度和應(yīng)力分析教材,覆蓋了該領(lǐng)域二級(jí)教程所需要的基本內(nèi)容。書中通過(guò)許多日常生活和工程應(yīng)用中的實(shí)際例子幫助讀者建立關(guān)于力學(xué)概念的直觀感性認(rèn)識(shí)。告訴讀者如何通過(guò)簡(jiǎn)單試驗(yàn)去驗(yàn)證理論概念,從而使他們能深入理解在工程設(shè)計(jì)公式中如何應(yīng)用這些概念。廣泛收集了大量基本的和高難度的習(xí)題,并注意與工程實(shí)際和設(shè)計(jì)經(jīng)驗(yàn)緊密聯(lián)系?!吨屑?jí)材料力學(xué)》積累了作者的教學(xué)經(jīng)驗(yàn),對(duì)一些通常認(rèn)為枯燥而困難的問(wèn)題給出了新穎而現(xiàn)代的處理方法?!吨屑?jí)材料力學(xué)》是本面向工程設(shè)計(jì)的力學(xué)教材,對(duì)從事應(yīng)力分析和強(qiáng)度設(shè)計(jì)的科技工作者、講授高等材料力學(xué)和應(yīng)力分析課程的教師以及理工院校的高年級(jí)學(xué)生和研究生是一本很好的參考書。

作者簡(jiǎn)介

暫缺《中級(jí)材料力學(xué)》作者簡(jiǎn)介

圖書目錄

CONTENTS
Chapter1
IntroductionI
1.1The Engineering Design Process1
1.1.1Economics of designcalculations2
1.2Design Optimization2
1.2.1Predicting the behavior of thecomponent4
1.2.2Approximate solutions5
1.3Relative Magnitude of Different Effects6
1.4Formulating and Solving Problems8
1.4.1Use of procedures9
1.4.2Inverse problems10
1.4.3Physical uniqueness and existencearguments11
1.5Review of Elementary Mechanics ofMaterials12
1.5.1Definition of stress components12
1.5.2Transformation of stresscomponents13
1.5.3Displacement and strain131.5.4Hookes law15
1.5.5Bending of beams17
1.5.6Torsion of circular bars18
1.6Summary18
Further Reading19
Problems19
Chapter2
Material Behavior and Failure25
2.1Transformation of Stresses27
2.1.1Review of two-dimensional results27
2.1.2Principal stresses in threedimensions30
2.2Failure Theories for Isotropic Materials36
2.2.1The failure surface37
2.2.2The shape of the failure envelope39
2.2.3Ductile failure (yielding)39
2.2.4 Brittle failure 50
2.3Cyclic Loading and Fatigue62
2.3.1Experimental data64
2.3.2Statistics and the size effect67
2.3.3Factors influencing the designstress72
2.3.4Effect of a superposed meanstress77
2.3.5Summary of the design process80
2.4Summary85
Further Reading86
Problems87
Chapter3
Energy Methods97
3.1Work Done on Loading and Unloading98
3.2Strain Energy100
3.3Load-Displacement Relations101
3.3.1Beams with continuously varying bending moments104
3.3.2Axial loading and torsion105
3.3.3More general expressions for strain energy107
3.3.4Strain energy associated with shear forces in beams107
3.4Potential Energy107
3.5The Principle of Stationary Potential Energy110
3.5.1Potential energy due to an external force113
3.5.2Problems with several degrees of freedom113
3.5.3Nonlinear problems116
3.6The Rayleigh-Ritz Method118
3.6.1Improving the accuracy121
3.6.2Improving the back of the envelope approximation123
3.7Castiglianos First Theorem129
3.8Linear Elastic Systems133
3.8.1Strain energy133
3.8.2Bounds on the coefficients136
3.8.3Use of the reciprocal theorem137
3.9The Stiffness Matrix138
3.9.1Structures consisting of beams140
3.9.2Assembly of the stiffness matrix143
3.10 Castiglianos Second Theorem143
3.10.1 Use of the theorem145
3.10.2 Dummy loads147
3.10.3 Unit load method150
3.10.4 Formal procedure for using
Castiglianos second theorem151
3.10.5 Indeterminate problems151
3.10.6 Three-dimensional problems155
3.11 Summary157
Further Reading158
Problems158
Chapter4
Unsymmetrical Bending177
4.1Stress Distribution in Bending177
4.1.1Bending about one axis177
4.1.2Generalized bending180
4.1.3Force resultants181
4.1.4Uncoupled problems182
4.1.5Coupled problems184
4.2Displacements of the Beam187
4.3Second Moments of Area190
4.3.1Finding the centroid191
4.3.2The parallel axis theorem192
4.3.3Thin-walled sections196
4.4Further Properties of Second Moments198
4.4.1Coordinate transformation198
4.4.2Mohrs circle of second moments200
4.4.3Solution of unsymmetrical bending
problems in principal coordinates203
4.4.4Design estimates for the behavior of unsymmetrical sections206
4.4.5Errors due to misalignment209
4.5Summary211
Further Reading211
Problems211
Chapter5
Nonlinear and Elastic-Plastic
Bending225
5.1Kinematics of Bending225
5.2Elastic-Plastic Constitutive Behavior227
5.2.1Unloading and reloading228
5.2.2Yield during reversed loading229
5.2.3Elastic-perfectly plastic material230
5.3Stress Fields in Nonlinear and Inelastic Bending231
5.3.1Force and moment resultants232
5.4Pure Bending about an Axis of Symmetry233
5.4.1Symmetric problems forelastic-perfectly plastic materials234
5.4.2Fully plastic moment and shapefactor239
5.5Bending of a Symmetric Section about anOrthogonal Axis240
5.5.1The fully plastic case240
5.5.2Nonzero axial force243
5.5.3The partially plastic solution245
5.6Unsymmetrical Plastic Bending248
5.7Unloading, Springback and ResidualStress252
5.7.1Springback and residualcurvature254
5.7.2Reloading and shakedown257
5.8Limit Analysis in the Design of Beams258
5.8.1Plastic hinges259
5.8.2Indeterminate Problems259
5.9Summary262
Further Reading263
Problems263
Chapter6
Shear and Torsion of Thin-WalledBeams275
6.1Derivation of the Shear Stress Formula276
6.1.1Choice of cut and direction of the shearstress280
6.1.2Location and magnitude of themaximum shear stress285
6.1.3Welds, rivets, and bolts287
6.1.4Curved sections289
6.2Shear Center291
6.2.1Finding the shear center 291
6.3Unsymmetrical Sections298
6.3.1Shear stress for an unsymmetricalsection298
6.3.2Determining the shear center 298
6.4Closed Sections300
6.4.1Determination of the shear stressdistribution300
6.5Pure Torsion of Closed Thin-WalledSections305
6.5.1Torsional stiffness306
6.5.2Design considerations in torsion309
6.6Finding the Shear Center for a Closed Section310
6.6.1Twist due to a shear force312
6.6.2Multicell sections315
6.7Torsion of Thin-Walled Open Sections316
6.7. lLoading of an open section away from its shear center319
6.8Summary322
Further Reading323
Problems323
Chapter7
Beams on Elastic Foundations339
7.1The Governing Equation340
7.1.1Solution of the governing equation341
7.2The Homogeneous Solution342
7.2.1The semi-infinite beam343
7.3Localized Nature of the Solution347
7.4Concentrated Force on an Infinite Beam349
7.4.1More general loading of the infinite beam350
7.5The Particular Solution351
7.5.1Uniform loading352
7.5.2 Discontinuous loads354
7.6Finite Beams356
7.7Short Beams358
7.8Summary361
Further Reading361
Problems362
Chaptar8
Membrane Stresses in Axisymmetric
Shells369
8.1The Meridional Stress370
8.1.1Choice of cut373
8.2The Circumferential Stress375
8.2.1The radii of curvature377
8.2.2Sign conventions379
8.3Self-Weight 381
8.4Relative Magnitudes of Different Loads384
8.5Strains and Displacements386
8.5.1Discontinuities387
8.6Summary389
Further Reading390
Problems390
Chapter9
Axisymmetric Bending of Cylindrical
Shells401
9.1Bending Stresses and Moments401
9.2Deformation of the Shell403
9.3Equilibrium of the Shell Element 405
9.4The Governing Equation406
9.4.1Solution strategy408
9.5Localized Loading of the Shell411
9.6Shell Transition Regions412
9.6. lThe cylinder to cone transition415
9.6.2Reinforcing rings417
9.7Thermal Stresses419
9.8The ASME Pressure Vessel Code421
9.9Summary421
Further Reading422
Problems422
Chapter10
Thick-Walled Cylinders and Disks429
10.1 Solution Method 429
10.1.1 Stress components and the equilibrium condition430
10.1.2 Strain, displacement, and compatibility431
10.1.3 The elastic constitutive law432
10.2 The Thin Circular Disk 434
10.3 Cylindrical Pressure Vessels440
10.4 Composite Cylinders, Limits and Fits443
10.4.1 Solution procedure444
10.4.2 Limits and fits447
10.5 Plastic Deformation of Disks and Cylinders448
10.5.1 First yield 449
10.5.2 The fully plastic solution450
10.5.3 Elastic-plastic problems452
10.5.4 Other failure modes455
10.5.5 Unloading and residual stresses456
10.6 Summary457
Further Reading458
Problems458
Chapter11
Curved Beams467
11.1 The Governing Equation467
11.1.1 Rectangular and circular cross sections470
11.1.2 The bending moment471
11.1.3 Composite cross sections474
11.1.4 Axial loading474
11.2 Radial Stresses480
11.3 Distortion of the Cross Section482
11.4 Range of Application of the Theory484
11.5 Summary485
Further Reading485
Problems485
Chapter12
Elastic Stability 491
12.1 Uniform Beam in Compression492
12.2 Effect of Initial Perturbations497
12.2.1 Eigenfunction expansions500
12.3 Effect of Lateral Load (Beam-Columns)501
12.4 Indeterminate Problems505
12.5 Suppressing Low-Order Modes506
12.6 Beams on Elastic Foundations510
12.6.1 Axisymmetric buckling of cylindrical shells512
12.6.2 Whirling of shafts513
12.7 Energy Methods518
12.7.1 Energy methods in beam problems519
12.7.2 The uniform beam in compression520
12.7.3 Inhomogeneous problems523
12.8 Quick Estimates for the Buckling Force524
12.9 Summary526
Further Reading526
Problems527
AppendixA
The Finite Element Method537
A.1Approximation538
A.I.1 The "best" approximation538
A. 1.2 Choice of weight functions539
A. 1.3 Discrete approximations541
A.2Axial Loading545
A.2.1The structural mechanics approach545
A.2.2 Assembly of the global stiffness matrix547
A.2.3 The nodal forces548
A.2.4 The Rayleigh-Ritz approach549
A.2.5 Direct evaluation of the matrix equation554
A.3Solution of Differential Equations556
A.4Finite Element Solutions for the Bending of Beams558
A.4.1Nodal forces and moments562
A.5Two- and Three-Dimensional Problems565
A.6Computational Considerations566
A.6.1Data storage considerations568
A.7Use of the Finite Element Method in Design568
A.8 Summary569
Further Reading570
Problems570
AppendixB
Properties of Areas577
AppendixC
Stress Concentration Factors581
AppendixD
Answers to Even-Numbered
Problems585

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)