注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)自然科學(xué)總論最優(yōu)和平衡

最優(yōu)和平衡

最優(yōu)和平衡

定 價(jià):¥64.00

作 者: ( )Jean-Pierre Aubin著
出版社: 世界圖書出版公司北京公司
叢編項(xiàng): Graduate Texts in Mathematics
標(biāo) 簽: 暫缺

購(gòu)買這本書可以去


ISBN: 9787506236591 出版時(shí)間: 1998-01-01 包裝: 膠版紙
開(kāi)本: 20cm 頁(yè)數(shù): 417頁(yè) 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  As in ordinary language, metaphors may be used in mathematics to explain agiven phenomenon by associating it with another which is (or is considered tobe) more familiar. It is this sense of familiarity, whether individual or collective,innate or acquired by education, which enables one to convince oneself that onehas understood the phenomenon in question. Contrary to popular opinion, mathematics is not simply a richer or moreprecise language. Mathematical reasoning is a separate faculty possessed by allhuman brains, just like the ability to compose or listen to music, to paint orlook at paintings, to believe in and follow cultural or moral codes, etc. But it is impossible (and dangerous) to compare these various facultieswithin a hierarchical framework; in particular, one cannot speak of thesuperiority of the language of mathematics. Naturally, the construction of mathematical metaphors requires theautonomous development of the discipline to provide theories which may besubstituted for or associated with the phenomena to be explained. This is thedomain of pure mathematics. The construction- of the mathematical corpusobeys its own logic, like that of literature, music or art. In all these domains,an aesthetic satisfaction is at once the objective of the creative activity and asignal which enables one to recognise successful works. (Likewise, in all thesedomains, fashionable phenomena - reflecting social consensus - are used todevelop aesthetic criteria).本書為英文版。

作者簡(jiǎn)介

暫缺《最優(yōu)和平衡》作者簡(jiǎn)介

圖書目錄

Introduction
PartI.NonlinearAnalysis:Theory
1.MinimisationProblems:GeneralTheorems
1.1Introduction
1.2Definitions
1.3Epigraph
1.4LowerSections
1.5LowerSemi-continuousFunctions
1.6LowerSemi-compactFunctions
1.7ApproximateMinimisationofLowerSemi-continuousFunctions
onaCompleteSpace
1.8ApplicationtoFixed-pointTheorems
2.ConvexFunctionsandProximation,Projectionand
SeparationTheorems
2.1Introduction
2.2Definitions
2.3ExamplesofConvexFunctions
2.4ContinuousConvexFunctions
2.5TheProximationTheorem
2.6SeparationTheorems
3.ConjugateFunctionsandConvexMinimisationProblems
3.1Introduction
3.2CharacterisationofConvexLowerSemi-continuousFunctions
3.3Fenchel'sTheorem
3.4PropertiesofConjugateFunctions
3.5SupportFunctions
4.SubdifferentialsofConvexFunctions
4.1Introduction
4.2Definitions
4.3SubdifferentiabilityofConvexContinuousFunctions
4.4SubdifferentiabilityofConvexLowerSemi-continuousFunctions
4.5SubdifferentialCalculus
4.6TangentandNormalCones
5.MarginalPropertiesofSolutionsofConvexMinimisation
Problems
5.1Introduction
5.2Fermat'sRule
5.3MinimisationProblemswithConstraints
5.4PrincipleofPriceDecentralisation
5.5RegularisationandPenalisation
6.GeneralisedGradientsofLocallyLipschitzFunctions
6.1Introduction
6.2Definitions
6.3ElementaryProperties
6.4GeneralisedGradients
6.5NormalandTangentConestoaSubset
6.6Fermat'sRuleforMinimisationProblemswithConstraints
7.Two-personGames.FundamentalConceptsandExamples
7.1Introduction
7.2DecisionRulesandConsistentPairsofStrategies
7.3Brouwer'sFixed-pointTheorem(1910)
7.4TheNeedtoConvexify:MixedStrategies
7.5GamesinNormal(Strategic)Form
7.6ParetoOptima
7.7ConservativeStrategies
7.8SomeFiniteGames
7.9Cournot'sDuopoly
8.Two-personZero-sumGames:TheoremsofVonNeumann
andKyFan
8.1Introduction
8.2ValueandSaddlePointsofaGame
8.3ExistenceofConservativeStrategies
8.4ContinuousPartitionsofUnity
8.5OptimalDecisionRules
9.SolutionofNonlinearEquationsandInclusions
9.1Introduction
9.2UpperHemi-continuousSet-valuedMaps
9.3TheDebreu-Gale-Nikai'doTheorem
9.4TheTangentialCondition
9.5TheFundamentalTheoremfortheExistenceofZerosof
aSet-valuedMap
9.6Fixed-pointTheorems
9.7TheViabilityTheorem
9.8VariationalInequalities
9.9TheLeray-SchauderTheorem
9.10Quasi-variationalInequalities
9.11Shapley'sGeneralisationoftheThree-PolesLemma
10.IntroductiontotheTheoryofEconomicEquilibrium
10.1Introduction
10.2ExchangeEconomies
10.3TheWalrasian~Mechanism
10.4AnotherMechanismforPriceDecentralisation
10.5CollectiveFinancialRule
11.TheVonNeumannGrowthModel
11.1Introduction
11.2TheVonNeumannModel
11.3ThePerron-FrobeniusTheorem
11.4SurjectivityoftheMmatrices
12.n-personGames
12.1Introduction
12.2Non-cooperativeBehaviour
12.3n-personGamesinNormal(Strategic)Form
12.4Non-cooperativeGameswithConstraints(Metagames)
12.5ParctoOptima
12.6BehaviourofPlayersinCoalitions
12.7CooperativeGamesWithoutSidePayments
13.CooperativeGamesandFuzzyGames
13.1Introduction
13.2Coalitions,FuzzyCoalitionsandGeneralisedCoalitions
ofnPlayers
13.3ActionGamesandEquilibriumCoalitions
13.4Share-outGameswithSidePayments
13.5CoreandShapleyValueofStandardGames
PartII.NonlinearAnalysis:Examples
14.Exercises
14.1ExercisesforChapter1
14.2ExercisesforChapter2
14.3ExercisesforChapter3
14.4ExercisesforChapter4
14.5ExercisesforChapter5
14.6ExercisesforChapter6
14.7ExercisesforChapter8
14.8ExercisesforChapter9
14.9ExercisesforChapter10
14.10ExercisesforChapter11
14.11ExercisesforChapter12
14.12ExercisesforChapter13
15.StatementsofProblems
15.1Problem1-Set-valuedMapswithaClosedGraph
15.2Problem2-UpperSemi-continuousSet-valuedMaps
15.3Problem3-ImageofaSet-valuedMap
15.4Problem4-InverseImageofaSet-valuedMap
15.5Problem5-PolarsofaSet-valuedMap
15.6Problem6-MarginalFunctions
15.7Problem7-GenericContinuityofaSet-valuedMapwith
aClosedGraph
15.8Problem8-ApproximateSelectionofanUpperSemi-continuous
Set-valuedMap
15.9Problem9-ContinuousSelectionofaLowerSemi-continuous
Set-valuedMap
15.10Problem10-InterioroftheImageofaConvexClosedCone
15.11Problem11-DiscreteDynamicalSystems
15.12Problem12-FixedPointsofContractiveSet-valuedMaps
15.13Problem13-ApproximateVariationalPrinciple
15.14Problem14-OpenImageTheorem
15.15Problem15-AsymptoticCentres
15.16Problem16-FixedPointsofNon-expansiveMappings
15.17Problem17-OrthogonalProjectorsontoConvexClosedCones
15.18Problem18-Gamma-convexFunctions
15.19Problem19-ProperMappings
15.20Problem20-Fenchel'sTheoremfortheFunctionsL(x,Ax)
15.21Problem21-ConjugateFunctionsofx→L(x,Ax)
15.22Problem22-HamiltoniansandPartialConjugates
15.23Problem23-LackofConvexityandFenchel'sTheoremfor
ParetoOptima
15.24Problem24-DualityinLinearProgramming
15.25Problem25-LagrangianofaConvexMinimisationProblem
15.26Problem26-VariationalPrinciplesforConvexLagrangians
15.27Problem27-VariationalPrinciplesforConvexHamiltonians
15.28Problem28-ApproximationtoFermat'sRule
15.29Problem29-TransposesofConvexProcesses
15.30Problem30-ConeswithaCompactBase
15.31Problem31-RegularityofTangentCones
15.32Problem32-TangentConestoanIntersection
15.33Problem33-DerivativesofSet-valuedMapswithConvex
Graphs
i5.34Problem34-EpiderivativesofConvexFunctions
15.35Problem35-SubdifferentialsofMarginalFunctions
15.36Problem36-ValuesofaGameAssociatedwithaCovering
15.37Problem37-MinimaxTheoremswithWeak
CompactnessAssumptions
15.38Problem38-MinimaxTheoremsforFiniteTopologies
15.39Problem39-KyFan'sInequality
15.40Problem40-KyFan'sInequalityforMonotoneFunctions
15.41Problem41-GeneralisationoftheGale-Nikaido-Debreu
Theorem
15.42Problem42-EquilibriumofCoerciveSet-valuedMaps
15.43Problem43-EigenveetorsofSet-valuedMaps
15.44Problem44-PositiveEigenvectorsofPositiveSet-valuedMaps
15.45Problem45-SomeVariationalPrinciples
15.46Problem46-GeneralisedVariationalInequalities
15.47Problem47-MonotoneSet-valuedMaps
15.48Problem48-WalrasianEquilibriumforSet-valued
DemandMaps
16.SolutionstoProblems
16.1Problem1-Solution
16.2Problem2-Solution
16.3Problem3-Solution
16.4Problem4-Solution
16.5Problem5-Solution
16.6Problem6-Solution
16.7Problem7-Solution
16.8Problem8-Solution
16.9Problem9-Solution
16.10Problem10-Solution
16.11Problem11-Solution
16.12Problem12-Solution
16.13Problem13-Solution
16.14Problem14-Solution
16.15Problem15-Solution
16.16Problem16-Solution
16.17Problem17-Solution
16.18Problem18-Solution
16.19Problem19-Solution
16.20Problem20-Solution
16.21Problem21-Solution
16.22Problem22-Solution
16.23Problem23-Solution
16.24Problem24-Solution
16.25Problem25-Solution
16.26Problem26-Solution
16.27Problem27-Solution
16.28Problem28-Solution
16.29Problem29-Solution
16.30Problem30-Solution
16.31Problem31-Solution
16.32Problem32-Solution
16.33Problem33-Solution
16.34Problem34-Solution
16.35Problem35-Solution
16.36Problem36-Solution
16.37Problem37-Solution
16.38Problem38-Solution
16.39Problem39-Solution
16.40Problem40-Solution
16.41Problem41-Solution
16.42Problem42-Sol'ation
16.43Problem43-Solution
16.44Problem44-Solution
16.45Problem45-Solution
16.46Problem46-Solution
16.47Problem47-Solution
16.48Problem48-Solution
Appendix
17.CompendiumofResults
17.1Strict,Convex,LowerSemi-continuousFunctions
17.2ConvexFunctions
17.3ConjugateFunctions
17.4SeparationTheoremsandSupportFunctions
17.5Subdifferentiability
17.6TangentandNormalCones
17.7Optimisation
17.8Two-personGames
17.9Set-valuedMapsandtheExistenceofZerosandFixedPoints
References
SubjectIndex

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)