注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)工業(yè)技術(shù)機(jī)械、儀表工業(yè)計(jì)算固體力學(xué)

計(jì)算固體力學(xué)

計(jì)算固體力學(xué)

定 價(jià):¥48.00

作 者: 劉正興等編著
出版社: 上海交通大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 計(jì)算固體力學(xué)

ISBN: 9787313024572 出版時(shí)間: 2000-01-01 包裝: 平裝
開(kāi)本: 26cm 頁(yè)數(shù): 400頁(yè) 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《計(jì)算固體力學(xué)(第2版)》以能量原理作為理論基礎(chǔ),以變分法作為數(shù)學(xué)工具,對(duì)有限單元的理論、建模、列式與求解作了詳盡的論述,同時(shí)也介紹了基于結(jié)構(gòu)力學(xué)和彈性力學(xué)建立有限單元模型的一般方法。在此基礎(chǔ)上,逐個(gè)推導(dǎo)了桿、梁、板、殼和塊單元,重點(diǎn)介紹了目前工程中廣泛應(yīng)用的矩陣位移法。以基于虛功原理的協(xié)調(diào)模型為重點(diǎn),對(duì)基于余虛功原理的平衡模型,以及基于修正的能量原理的各類雜交模型也作了適當(dāng)?shù)慕榻B?!队?jì)算固體力學(xué)(第2版)》對(duì)固體力學(xué)一些新興領(lǐng)域中的數(shù)值分析方法,如彈性壓電材料與智能結(jié)構(gòu)分析,流固耦合及哈密爾頓體系等進(jìn)行了由淺入深的論述?!队?jì)算固體力學(xué)(第2版)》還結(jié)合具體問(wèn)題,對(duì)邊界元法、半解析法、有限條法作了簡(jiǎn)單的介紹。《計(jì)算固體力學(xué)(第2版)》是在參考了大量資料的基礎(chǔ)上,結(jié)合作者幾十年的研究成果匯編而成,可作為機(jī)械、土木、船舶與海洋、航空航天等工程專業(yè)本科生和研究生教材,也可作為工程技術(shù)人員的參考書。

作者簡(jiǎn)介

暫缺《計(jì)算固體力學(xué)》作者簡(jiǎn)介

圖書目錄

緒論
一、結(jié)構(gòu)分析方法
二、結(jié)構(gòu)分析的領(lǐng)域
三、有限單元法
參考文獻(xiàn)
第一章 變分法基礎(chǔ)
第一節(jié) 引言
一、最速降線問(wèn)題
二、短程線問(wèn)題
三、等周問(wèn)題
第二節(jié) 變分及其特性
一、泛函的定義
二、變分
三、泛函的連續(xù)
四、泛函的變分
五、泛函的駐值
第三節(jié) 歐拉方程
一、變分法的基本預(yù)備定理
二、泛函極值問(wèn)題的求解
三、歐拉方程的建立
第四節(jié) 依賴于高階導(dǎo)數(shù)的泛函
一、歐拉一泊松方程
二、例題
第五節(jié) 多個(gè)待定函數(shù)的泛函
第六節(jié) 含有多個(gè)自變量的函數(shù)的泛函
一、二變量問(wèn)題
二、多變量問(wèn)題
第七節(jié) 條件極值的變分問(wèn)題
一、函數(shù)的條件駐值問(wèn)題
二、泛函在約束條件
三、等周問(wèn)題
參考文獻(xiàn)
第二章 能量原理
第一節(jié) 引言
一、矢量的微分和積分
二、對(duì)稱正定矩陣的定義和性質(zhì)
三、對(duì)稱正定矩陣的充分必要條件
四、二次型的微分和積分
第二節(jié) 小位移彈性理論的基本方程
一、平衡方程
二、應(yīng)變一位移關(guān)系
三、應(yīng)力一應(yīng)變關(guān)系
四、邊界條件
第三節(jié) 功和余功,應(yīng)變能和余應(yīng)變能
一、功
二、余功
三、應(yīng)變能
四、余應(yīng)變能
第四節(jié) 虛功原理
第五節(jié) 基于虛功原理的近似解法
一、瑞利一里茲法
二、伽遼金法
三、例題
第六節(jié) 基于虛功原理的能量定理
一、最小位能原理
二、卡氏第一定理
三、單位一位移定理
第七節(jié) 余虛功原理
第八節(jié) 基于余虛功原理的能量定理
一、最小余能原理
二、卡氏第二定理
三、單位一載荷定理
第九節(jié) 附加定理
一、克拉皮隆定理
二、貝諦定理
三、麥克斯韋爾互換定理
第十節(jié) 廣義變分原理
一、散度定理
二、不連續(xù)情況
三、廣義原理
四、派生的變分原理
第十一節(jié) 傳統(tǒng)變分原理的小結(jié)
第十二節(jié) 修正的變分原理
一、從最小位能原理推導(dǎo)修正的變分原理
二、從最小余能原理推導(dǎo)修正的變分原理
參考文獻(xiàn)
第三章 協(xié)調(diào)模型分析
第一節(jié) 建立協(xié)調(diào)模型的一般方法
一、用單位一位移定理推導(dǎo)
二、用卡氏第一定理推導(dǎo)
三、由求解微分方程來(lái)推導(dǎo)
四、用最小位能原理推導(dǎo)
五、從柔度矩陣推導(dǎo)剛度矩陣
六、小結(jié)
第二節(jié) 梁?jiǎn)卧?br />一、軸向剛度
二、扭轉(zhuǎn)剛度
三、xy平面內(nèi)的彎曲剛度
四、xx平面內(nèi)的彎曲剛度
五、主軸坐標(biāo)系內(nèi)的力一位移關(guān)系式
六、節(jié)點(diǎn)坐標(biāo)系內(nèi)的力一位移關(guān)系式
七、基準(zhǔn)坐標(biāo)系內(nèi)的力一位移關(guān)系式
第三節(jié) 矩陣位移法
一、建立基本方程
二、邊界條件和方程的求解
三、單元內(nèi)力分析
第四節(jié) 平面三角形單元
一、位移函數(shù)
二、應(yīng)變一位移關(guān)系
三、應(yīng)力一應(yīng)變關(guān)系
四、單元?jiǎng)偠染仃?br />五、收斂性的條件
第五節(jié) 載荷的移置
第六節(jié) 矩形薄板單元
一、薄板彎曲問(wèn)題的有限單元法
二、位移模式
三、應(yīng)變一位移關(guān)系
四、應(yīng)力一應(yīng)變關(guān)系
五、剛度矩陣和平衡方程
六、內(nèi)力
七、載荷移置
八、收斂性的判別
九、例題
第七節(jié) 三角形薄殼單元
一、面積坐標(biāo)
二、三角形薄板單元
三、三角形薄殼單元
第八節(jié) 改善剛度矩陣的方法
一、靜凝聚方法
二、復(fù)合單元(子結(jié)構(gòu))
三、協(xié)調(diào)的三角形薄板單元
四、四邊形板殼單元
第九節(jié) 過(guò)渡梁?jiǎn)卧?br />第十節(jié) 軸對(duì)稱問(wèn)題的有限單元
一、彈性力學(xué)中的軸對(duì)稱問(wèn)題
二、軸對(duì)稱單元
三、討論
參考文獻(xiàn)
第四章 等參單元及雜交元
第五章 桿系結(jié)構(gòu)的程序設(shè)計(jì)
第六章 幾何非線性有限元
第八章 材料非線性的有限單元法
第八章 動(dòng)力問(wèn)題的有限單元法
第九章 彈性力學(xué)中的哈密爾頓理論及半解析法
第十章 壓電材料的有限元法和邊界元法
附錄1
附錄2
參考文獻(xiàn)

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)